A strategy for clinical guidance using PD biomarkers revealed from human primary (HuPrime) tumors transplanted in nude mice

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14612-e14612
Author(s):  
T. Chen ◽  
C. Liu ◽  
X. Song ◽  
L. Zhang ◽  
Y. Liu ◽  
...  

e14612 Background: Most anticancer drug candidates, currently in clinical trials, have clear targets in molecular and cellular systems. However, such molecular targets are not always affected (or not correlated with efficacious endpoints) when the candidate is evaluated in a clinical setting. There is an urgent need to develop better biological tools and models to ease the transition between in vitro and in vivo, and between preclinical and clinical settings. Activation of tyrosine kinases in tumor cells has been recognized as key driving force in malignancy; therefore inhibitors of tyrosine kinases (TKI) have often shown efficacy in preclinical in vivo models and beneficial responses in clinical trials. An increasing number of TKI has been approved as anticancer drugs in selected cancer types. Methods: We have developed a unique platform combining our novel HuPrime™ xenograft models with our PD biomarker technologies. This platform is used to better understand the efficacy of novel drug candidates and generate information critical to maximize the chance of a successful clinical development. To illustrate the usefulness of our platform, we have applied it to understand the pharmacodynamic changes (at the molecular level) which are associated with the activity of sunitinib and sorafenib in our sensitive esophageal HuPrime models. Tumor tissues from sensitive esophageal HuPrime models treated with single dose of the respective drugs (and a vehicle control) have been collected at time-points 4, 8, 16, and 24 hour. Results: We have successfully applied immunohistochemistry (IHC) assays on many molecules covering most pathways including proliferation, apoptotic, necrotic, and cell cycle regulation, G2M phase arrest, DNA damage response, etc. Additional markers including angiogenesis can also be included for certain therapeutic compounds. These tissues have been analyzed with our platform and we have uncovered key molecular events which correlate with the efficacy and potency of the drugs. Conclusions: The PD biomarkers validated in this approach have potential for clinical application and patient stratification. [Table: see text]

2021 ◽  
Vol 9 (7) ◽  
pp. e002503
Author(s):  
Miok Kim ◽  
Yong Ki Min ◽  
Jinho Jang ◽  
Hyejin Park ◽  
Semin Lee ◽  
...  

BackgroundAlthough cancer immunotherapy is one of the most effective advanced-stage cancer therapies, no clinically approved cancer immunotherapies currently exist for colorectal cancer (CRC). Recently, programmed cell death protein 1 (PD-1) blockade has exhibited clinical benefits according to ongoing clinical trials. However, ongoing clinical trials for cancer immunotherapies are focused on PD-1 signaling inhibitors such as pembrolizumab, nivolumab, and atezolizumab. In this study, we focused on revealing the distinct response mechanism for the potent CD73 ectoenzyme selective inhibitor AB680 as a promising drug candidate that functions by blocking tumorigenic ATP/adenosine signaling in comparison to current therapeutics that block PD-1 to assess the value of this drug as a novel immunotherapy for CRC.MethodsTo understand the distinct mechanism of AB680 in comparison to that of a neutralizing antibody against murine PD-1 used as a PD-1 blocker, we performed single-cell RNA sequencing of CD45+ tumor-infiltrating lymphocytes from untreated controls (n=3) and from AB680-treated (n=3) and PD-1-blockade-treated murine CRC in vivo models. We also used flow cytometry, Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) models, and in vitro functional assays to validate our new findings.ResultsWe initially observed that the expressions of Nt5e (a gene for CD73) and Entpd1 (a gene for CD39) affect T cell receptor (TCR) diversity and transcriptional profiles of T cells, thus suggesting their critical roles in T cell exhaustion within tumor. Importantly, PD-1 blockade significantly increased the TCR diversity of Entpd1-negative T cells and Pdcd1-positive T cells. Additionally, we determined that AB680 improved the anticancer functions of immunosuppressed cells such as Treg and exhausted T cells, while the PD-1 blocker quantitatively reduced Malat1high Treg and M2 macrophages. We also verified that PD-1 blockade induced Treg depletion in AOM/DSS CRC in vivo models, and we confirmed that AB680 treatment caused increased activation of CD8+ T cells using an in vitro T cell assay.ConclusionsThe intratumoral immunomodulation of CD73 inhibition is distinct from PD-1 inhibition and exhibits potential as a novel anticancer immunotherapy for CRC, possibly through a synergistic effect when combined with PD-1 blocker treatments. This study may contribute to the ongoing development of anticancer immunotherapies targeting refractory CRC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Safaet Alam ◽  
Taslima Binte Kamal ◽  
Md. Moklesur Rahman Sarker ◽  
Jin-Rong Zhou ◽  
S. M. Abdur Rahman ◽  
...  

COVID-19, transmitted by SARS-CoV-2, is one of the most serious pandemic situations in the history of mankind, and has already infected a huge population across the globe. This horrendously contagious viral outbreak was first identified in China and within a very short time it affected the world's health, transport, economic, and academic sectors. Despite the recent approval of a few anti-COVID-19 vaccines, their unavailability and insufficiency along with the lack of other potential therapeutic options are continuing to worsen the situation, with valuable lives continuing to be lost. In this situation, researchers across the globe are focusing on repurposing prospective drugs and prophylaxis such as favipiravir, remdesivir, chloroquine, hydroxychloroquine, ivermectin, lopinavir-ritonavir, azithromycin, doxycycline, ACEIs/ARBs, rivaroxaban, and protease inhibitors, which were preliminarily based on in vitro and in vivo pharmacological and toxicological study reports followed by clinical applications. Based on available preliminary data derived from limited clinical trials, the US National Institute of Health (NIH) and USFDA also recommended a few drugs to be repurposed i.e., hydroxychloroquine, remdesivir, and favipiravir. However, World Health Organization later recommended against the use of chloroquine, hydroxychloroquine, remdesivir, and lopinavir/ritonavir in the treatment of COVID-19 infections. Combining basic knowledge of viral pathogenesis and pharmacodynamics of drug molecules as well as in silico approaches, many drug candidates have been investigated in clinical trials, some of which have been proven to be partially effective against COVID-19, and many of the other drugs are currently under extensive screening. The repurposing of prospective drug candidates from different stages of evaluation can be a handy wellspring in COVID-19 management and treatment along with approved anti-COVID-19 vaccines. This review article combined the information from completed clinical trials, case series, cohort studies, meta-analyses, and retrospective studies to focus on the current status of repurposing drugs in 2021.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 426 ◽  
Author(s):  
Sabari Nath Neerukonda ◽  
Upendra Katneni

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of CoV disease 2019 (COVID-19) is a highly pathogenic and transmissible CoV that is presently plaguing the global human population and economy. No proven effective antiviral therapy or vaccine currently exists, and supportive care remains to be the cornerstone treatment. Through previous lessons learned from SARS-CoV-1 and MERS-CoV studies, scientific groups worldwide have rapidly expanded the knowledge pertaining to SARS-CoV-2 virology that includes in vitro and in vivo models for testing of antiviral therapies and randomized clinical trials. In the present narrative, we review SARS-CoV-2 virology, clinical features, pathophysiology, and animal models with a specific focus on the antiviral and adjunctive therapies currently being tested or that require testing in animal models and randomized clinical trials.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 544-544
Author(s):  
Giulia Borella ◽  
Ambra Da Ros ◽  
Elena Porcù ◽  
Claudia Tregnago ◽  
Maddalena Benetton ◽  
...  

Chemotherapy still remains the pillar of treatment of children with AML, a disease in which refinements in diagnostic approaches, minimal residual disease monitoring, and patient stratification have resulted into remarkable progresses during the past decade. However, most of the recently tested, novel anti-leukemia agents failed during pre-clinical and clinical validation phases, and one main limit in AML field is the inappropriateness of current preclinical models used to study drug efficacy, this jeopardizing the advance of phase II and III clinical trials, especially for children. In light of this consideration, we aimed at creating novel robust in vitro and in vivo approaches to discover or to re-assess alternative treatments to improve the portfolio of agents active in childhood AML. For this purpose, we developed new protocols for long-term 3D-AML cultures to perform more predictable high throughput drug screening in vitro, and, once identified the best compounds, to create new pre-clinical in vivo models. We set up the bone marrow (BM) endosteal niche by using a biomimetic 3D structure, made up of engineered hydroxyapatite and collagen I, where we seeded mesenchymal stromal cells derived either from AML patients (AML-MSCs) or from healthy BM donors (h-MSCs), together with osteoblasts, endothelial cells and finally AML blasts. We studied AML cell proliferation and clonogenicity cultured in 3D. We obtained results from twenty 3D long-term cultures of different primary AML, confirming blast proliferation up to 21 days. Clonogenic potential and immunophenotype preservation of the original AML blasts was also documented. At the same time, we compared AML-MSCs with h-MSCs, finding that AML-MSCs exhibited a higher proliferation rate (40% increase proliferation at 72 and 96 hours, p<0.001), and commitment to osteogenic differentiation, this latter occurring after 7 days with respect to 21 days of h-MSCs (p<0.01). To better characterize AML-MSCs features supporting AML cell growth, we cultured AML-MSCs and h-MSCs in an inflammatory environment (IL1β, IL6 and TNFα), observing that AML-MSCs did not exert anti-inflammatory activity by HUVEC tube formation assay (n=6, p<0.001). This latter finding was supported by a peculiar secretome profile defined by mass-spectrometry revealing factors as SERPINE1, CHI3L1, TIMP1, and PTX3 being differentially secreted. Thus, a drug targeting of AML-MSCs would be desirable, and we performed a screening of 480 compounds. This screening identified 17/480 active compounds capable of reducing AML-MSCs proliferation without toxicity over h-MSCs and AML blasts. We identified one main compound able to selectively reduce AML-MSCs proliferation, that, when combined to novel therapeutic agents for AML, such as the Quizartinib, I-BET inhibitor and Dasatinib in the 3D cultures, showed a synergistic effect (CI=0.5, p<0.05) towards FLT3-ITD, MLL-rearranged or c-KIT mutated AML. We then proceeded with two pilot studies in order to define the use of this 3D-AML cultures in in vivo setting. We implanted these organoids in the back of NSG mice and monitored leukemia engraftment in the scaffolds, as well as AML dissemination in peripheral blood. We documented the niche being vascularized and well organized by immunohistochemical staining for mCD31, hCD45 and hOPN, whereas we had a low rate of success in AML dissemination out of the niche (1 AML out of 14 implanted in 15 months). On the contrary, we observed that AML cells proliferated in the 3D up to 9 months after implantation, suggesting that this system is more suitable for an easy and quick in loco drug testing. Thus, we implanted AML, after being transduced with luciferase, in the 3D niche in NSG mice and monitored luciferase activity during intra-peritoneal drug treatments. We evaluated some new and old compounds known to target leukemia cells and documented a significant reduction of luciferase in the 3D when a drug was active, supporting our 3D scaffolds as a novel useful in vivo system to screen selected drugs before the prioritization of the best one to be used in a pre-clinical setting in PDXs. In conclusion, our data support the possibility to work with long-term 3D cultures of AML in vitro to identify new drugs, and we attribute to AML-MSCs a crucial supportive role to be further considered in in vivo settings for novel combo strategies. Finally, these findings could help test new compounds to be validated in future clinical trials. Disclosures Locatelli: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria; bluebird bio: Consultancy.


2007 ◽  
Vol 35 (5) ◽  
pp. 1142-1146 ◽  
Author(s):  
R. Motterlini

The well-known adverse effects of CO (carbon monoxide) intoxication are counterbalanced by its positive actions when small amounts are produced intracellularly by the cytoprotective enzyme HO-1 (haem oxygenase-1). As compelling scientific evidence accumulated to sustain that HO-1 plays a fundamental role in counteracting vascular and inflammatory disorders, we began to appreciate that a controlled delivery of CO to mammals may provide therapeutic benefits in a number of pathological states. This is the rationale for the recent development of CO-RMs (CO-releasing molecules), a group of compounds capable of carrying and liberating controlled quantities of CO in cellular systems, which offer a plausible tool for studying the pharmacological effects of this gas and identifying its mechanism(s) of action. The present review will highlight the encouraging results obtained so far on the vasodilatory, anti-ischaemic and anti-inflammatory effects elicited by CO-RMs in in vitro and in vivo models with an emphasis on the prospect of converting chemical CO carriers into CO-based pharmaceuticals.


2001 ◽  
Vol 84 (10) ◽  
pp. 1424-1431 ◽  
Author(s):  
J I Johnson ◽  
S Decker ◽  
D Zaharevitz ◽  
L V Rubinstein ◽  
J M Venditti ◽  
...  

Author(s):  
Anna Notaro ◽  
Angelo Frei ◽  
Riccardo Rubbiani ◽  
Marta Jakubaszek ◽  
Uttara Basu ◽  
...  

Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a surge for new chemotherapeutic drugs. More specifically, the discovery of new drug candidates able to overcome severe side effects, the occurrence of resistance and the inefficacy toward metastatic tumours is highly desirable. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely [Ru(DIP)2(sq)]PF6 (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated to the catecholate moiety. Several pieces of experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrate that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinised in vitro and in vivo, and the results highlight the tremendous potential of this complex as a chemotherapeutic agent against cancer. Ru-sq was notably found have a much higher cytotoxic activity than cisplatin on several cell lines (i.e. in the nanomolar range), and, contrary to cisplatin, to have mitochondrial disfunction as one of its modes of action. The multicellular targets of Ru-sq could potentially be the key to overcome one of the main drawbacks of cisplatin i.e. the occurrence of resistance. Moreover, Ru-sq exhibited impressing activity on Multi Cellular Tumour Spheroids (MCTS) model, leading to a growth inhibition of the tumour even 13 days after treatment (20 μM). Very importantly, using two different in vivo models, it could be demonstrated that this compound is extremely well-tolerated by mice and has a very promising activity, curing, in some cases, tumour-bearing mice.<br>


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. TPS2604-TPS2604 ◽  
Author(s):  
Aung Naing ◽  
Gabriel Lopez-Berestein ◽  
Siqing Fu ◽  
Apostolia Maria Tsimberidou ◽  
Shubham Pant ◽  
...  

TPS2604 Background: EphA2 is a member of the largest subfamily of receptor tyrosine kinases, with over 14 receptors and 8 ligands. EphA2 overexpression is common in many human cancers, including lung, breast, prostate, colorectal, pancreatic, melanoma, esophageal and endometrial cancers. EphA2 can function as an oncoprotein when introduced into cells with low expression. In addition, downregulation of constitutive expression reduces tumorigenicity in breast, endometrial, ovarian and pancreatic cancers in vitro and in vivo models. EphA2 is a desirable target because of its selective expression in cancer (vs. adult normal tissue), and its important role in promoting tumor growth and metastasis. It has kinase-dependent and independent functions, making it an ideal target for RNAi-based targeting. We have previously reported that EphA2 siRNA incorporated in DOPC nanoliposomes (EPHARNA) was highly effective in reducing EphA2 protein levels after a single dose. In addition, three weeks of treatment with EPHARNA (150 μg/kg twice weekly) in an orthotopic mouse model of ovarian cancer (HeyA8 or SKOV3ip1) significantly reduced tumor growth compared with non-silencing siRNA, and demonstrated synergistic anti-tumor activity when combined with conventional chemotherapy. EPHARNA underwent GLP development in 2 animal models (murine and primate) at M.D. Anderson to support the IND (#72924). The first-in-human trial (NCT01591356) is ongoing and recruiting study subjects. Methods: Adult Patients > 18 years of age with histologic proof of advanced recurrent solid tumors, who are not candidates for known regimens or protocol treatments of higher efficacy or priority. All patients (dose escalation and dose expansion phases) must be willing to undergo pre- and post-treatment biopsies. For dose expansion phase, patients must have EphA2 overexpression by IHC evaluation. Enrollment is ongoing for the dose escalation with the plan for dose expansion. A total of 16 patients have been enrolled and treated in the dose escalation phase. Clinical trial information: NCT01591356.


Planta Medica ◽  
2021 ◽  
Author(s):  
Isabel Ureña-Vacas ◽  
Elena González-Burgos ◽  
Pradeep Kumar Divakar ◽  
M. Pilar Gómez-Serranillos

AbstractDepsidones are some of the most abundant secondary metabolites produced by lichens. These compounds have aroused great pharmacological interest due to their activities as antioxidants, antimicrobial, and cytotoxic agents. Hence, this paper aims to provide up-to-date knowledge including an overview of the potential biological interest of lichen depsidones. So far, the most studied depsidones are fumarprotocetraric acid, lobaric acid, norstictic acid, physodic acid, salazinic acid, and stictic acid. Their pharmacological activities have been mainly investigated in in vitro studies and, to a lesser extent, in in vivo studies. No clinical trials have been performed yet. Depsidones are promising cytotoxic agents that act against different cell lines of animal and human origin. Moreover, these compounds have shown antimicrobial activity against both Gram-positive and Gram-negative bacteria and fungi, mainly Candida spp. Furthermore, depsidones have antioxidant properties as revealed in oxidative stress in vitro and in vivo models. Future research should be focused on further investigating the mechanism of action of depsidones and in evaluating new potential actions as well as other depsidones that have not been studied yet from a pharmacological perspective. Likewise, more in vivo studies are prerequisite, and clinical trials for the most promising depsidones are encouraged.


2019 ◽  
Author(s):  
Anna Notaro ◽  
Angelo Frei ◽  
Riccardo Rubbiani ◽  
Marta Jakubaszek ◽  
Uttara Basu ◽  
...  

Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a surge for new chemotherapeutic drugs. More specifically, the discovery of new drug candidates able to overcome severe side effects, the occurrence of resistance and the inefficacy toward metastatic tumours is highly desirable. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely [Ru(DIP)2(sq)]PF6 (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated to the catecholate moiety. Several pieces of experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrate that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinised in vitro and in vivo, and the results highlight the tremendous potential of this complex as a chemotherapeutic agent against cancer. Ru-sq was notably found have a much higher cytotoxic activity than cisplatin on several cell lines (i.e. in the nanomolar range), and, contrary to cisplatin, to have mitochondrial disfunction as one of its modes of action. The multicellular targets of Ru-sq could potentially be the key to overcome one of the main drawbacks of cisplatin i.e. the occurrence of resistance. Moreover, Ru-sq exhibited impressing activity on Multi Cellular Tumour Spheroids (MCTS) model, leading to a growth inhibition of the tumour even 13 days after treatment (20 μM). Very importantly, using two different in vivo models, it could be demonstrated that this compound is extremely well-tolerated by mice and has a very promising activity, curing, in some cases, tumour-bearing mice.<br>


Sign in / Sign up

Export Citation Format

Share Document