Microarray-based gene expression profiles reliably predict ELISA-derived uPA and PAI-1 levels in breast cancer biopsies, a comparison between fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) samples.

2011 ◽  
Vol 29 (15_suppl) ◽  
pp. 10555-10555
Author(s):  
C. Matuschek ◽  
H. B. Prisack ◽  
E. Boelke ◽  
W. Budach ◽  
M. Peiper ◽  
...  
2015 ◽  
Author(s):  
Anna Francina Webster ◽  
Paul Zumbo ◽  
Jennifer Fostel ◽  
Jorge Gandara ◽  
Susan D Hester ◽  
...  

Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for transcriptomic-based research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation of nucleic acids. Here we evaluated gene expression profiles derived from fresh-frozen (FRO) and FFPE mouse liver tissues using two DNA microarray protocols and two whole transcriptome sequencing (RNA-seq) library preparation methodologies. The ribo-depletion protocol outperformed the other three methods by having the highest correlations of differentially expressed genes (DEGs) and best overlap of pathways between FRO and FFPE groups. We next tested the effect of sample time in formalin (18 hours or 3 weeks) on gene expression profiles. Hierarchical clustering of the datasets indicated that test article treatment, and not preservation method, was the main driver of gene expression profiles. Meta- and pathway analyses indicated that biological responses were generally consistent for 18-hour and 3-week FFPE samples compared to FRO samples. However, clear erosion of signal intensity with time in formalin was evident, and DEG numbers differed by platform and preservation method. Lastly, we investigated the effect of age in FFPE block on genomic profiles. RNA-seq analysis of 8-, 19-, and 26-year-old control blocks using the ribo-depletion protocol resulted in comparable quality metrics, including expected distributions of mapped reads to exonic, UTR, intronic, and ribosomal fractions of the transcriptome. Overall, our results suggest that FFPE samples are appropriate for use in genomic studies in which frozen samples are not available, and that ribo-depletion RNA-seq is the preferred method for this type of analysis in archival and long-aged FFPE samples.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michal Marczyk ◽  
Chunxiao Fu ◽  
Rosanna Lau ◽  
Lili Du ◽  
Alexander J. Trevarton ◽  
...  

Abstract Background Utilization of RNA sequencing methods to measure gene expression from archival formalin-fixed paraffin-embedded (FFPE) tumor samples in translational research and clinical trials requires reliable interpretation of the impact of pre-analytical variables on the data obtained, particularly the methods used to preserve samples and to purify RNA. Methods Matched tissue samples from 12 breast cancers were fresh frozen (FF) and preserved in RNAlater or fixed in formalin and processed as FFPE tissue. Total RNA was extracted and purified from FF samples using the Qiagen RNeasy kit, and in duplicate from FFPE tissue sections using three different kits (Norgen, Qiagen and Roche). All RNA samples underwent whole transcriptome RNA sequencing (wtRNAseq) and targeted RNA sequencing for 31 transcripts included in a signature of sensitivity to endocrine therapy. We assessed the effect of RNA extraction kit on the reliability of gene expression levels using linear mixed-effects model analysis, concordance correlation coefficient (CCC) and differential analysis. All protein-coding genes in the wtRNAseq and three gene expression signatures for breast cancer were assessed for concordance. Results Despite variable quality of the RNA extracted from FFPE samples by different kits, all had similar concordance of overall gene expression from wtRNAseq between matched FF and FFPE samples (median CCC 0.63–0.66) and between technical replicates (median expression difference 0.13–0.22). More than half of genes were differentially expressed between FF and FFPE, but with low fold change (median |LFC| 0.31–0.34). Two out of three breast cancer signatures studied were highly robust in all samples using any kit, whereas the third signature was similarly discordant irrespective of the kit used. The targeted RNAseq assay was concordant between FFPE and FF samples using any of the kits (CCC 0.91–0.96). Conclusions The selection of kit to purify RNA from FFPE did not influence the overall quality of results from wtRNAseq, thus variable reproducibility of gene signatures probably relates to the reliability of individual gene selected and possibly to the algorithm. Targeted RNAseq showed promising performance for clinical deployment of quantitative assays in breast cancer from FFPE samples, although numerical scores were not identical to those from wtRNAseq and would require calibration.


2015 ◽  
Vol 148 (2) ◽  
pp. 460-472 ◽  
Author(s):  
A. Francina Webster ◽  
Paul Zumbo ◽  
Jennifer Fostel ◽  
Jorge Gandara ◽  
Susan D. Hester ◽  
...  

2011 ◽  
Vol 106 (3) ◽  
pp. 538-545 ◽  
Author(s):  
L A M Gravendeel ◽  
J J de Rooi ◽  
P H C Eilers ◽  
M J van den Bent ◽  
P A E Sillevis Smitt ◽  
...  

2004 ◽  
Vol 50 (12) ◽  
pp. 2384-2386 ◽  
Author(s):  
Marina Bibikova ◽  
Joanne M Yeakley ◽  
Eugene Chudin ◽  
Jing Chen ◽  
Eliza Wickham ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Lucas Delmonico ◽  
Said Attiya ◽  
Joan W. Chen ◽  
John C. Obenauer ◽  
Edward C. Goodwin ◽  
...  

Background. With the development of new drug combinations and targeted treatments for multiple types of cancer, the ability to stratify categories of patient populations and to develop companion diagnostics has become increasingly important. A panel of 325 RNA biomarkers was selected based on cancer-related biological processes of healthy cells and gene expression changes over time during nonmalignant epithelial cell organization. This “cancer in reverse” approach resulted in a panel of biomarkers relevant for at least 7 cancer types, providing gene expression profiles representing key cellular signaling pathways beyond mutations in “driver genes.” Objective. To further investigate this biomarker panel, the objective of the current study is to (1) validate the assay reproducibility for the 325 RNA biomarkers and (2) compare gene expression profiles side by side using two technology platforms. Methods and Results. We have mapped the 325 RNA transcripts and in a custom NanoString nCounter expression panel to be compared to all potential probe sets in the Affymetrix Human Genome U133 Plus 2.0. The experiments were conducted with 10 unique biological formalin-fixed paraffin-embedded (FFPE) breast tumor samples. Each site extracted RNA from four sections of 10-micron thick FFPE tissue over three different days by two different operators using an optimized standard operating procedure and quality control criteria. Samples were analyzed using mas5 in BioConductor and NanoStringNorm in R. Pearson correlation showed reproducibility between sites for all 60 samples with r=0.995 for Affymetrix and r=0.999 for NanoString. Correlation in multiple days and multiple users was for Affymetrix r=0.962−0.999 and for NanoString r=0.982−0.991. Conclusion. The 325 RNA biomarkers showed reproducibility in two technology platforms with moderate to high concordance. Future directions include performing clinical validation studies and generating rationale for patient selection in clinical trials using the technically validated assay.


Sign in / Sign up

Export Citation Format

Share Document