Genome-wide analysis and characterization of an online sarcoma cohort.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10097-10097
Author(s):  
Kimberly E Barnholt ◽  
Chuong B Do ◽  
Amy K Kiefer ◽  
Marisa Nelson ◽  
Judy Ellen Garber ◽  
...  

10097 Background: Recruitment of an adequately sized cohort for genome-wide studies presents a serious challenge for rare diseases such as sarcoma. Traditional barriers to participation include proximity of clinical centers and motivation or ability to travel. 23andMe’s web-based platform provides increased accessibility to research participation, facilitating rapid recruitment of patients (pts) and enabling a large-scale genome-wide association study (GWAS) of sarcoma. Methods: Sarcoma pts were recruited through web and email campaigns, patient advocacy groups, physician offices, and events. Pts provide IRB-approved consent, complete surveys, and receive updates about research progress through an online account. In collaboration with an uncompensated panel of academic experts, an online survey was developed to collect patient-reported data on diagnosis, family history, symptoms and treatment. Results: This web-based approach has accrued the largest genotyped, recontactable sarcoma cohort to date. In 20 months, 772 sarcoma pts have enrolled, 683 have been genotyped and 611 have provided data online. The cohort is primarily of European ancestry (92%), disproportionately female (72%), with an average age of 51 (± 15 years). More than 88% of pts indicated a soft tissue sarcoma diagnosis, with leiomyosarcoma, liposarcoma and “malignant fibrous histiocytoma” being the most commonly reported subtypes. Over 36% of pts report undergoing active treatment of some type. Association scans were conducted across a set of 8,058,452 imputed SNPs, using 568 unrelated sarcoma cases of European ancestry and >70,000 unrelated population controls from the 23andMe database. Initial results have identified no significant genome-wide associations for general sarcoma risk, despite having >90% power to detect risk variants with >5% minor allele frequency and odds ratio >2.5, suggesting the absence of common variants with strong shared effects across sarcoma subtypes. Conclusions: This pilot study demonstrates feasibility of rapid recruitment and longitudinal engagement of pts through online technology. Such techniques may significantly accelerate, and in some cases fully enable, large-scale genomic studies of sarcoma and other rare diseases.

2020 ◽  
Author(s):  
Segun Fatumo ◽  
Tinashe Chikowore ◽  
Robert Kalyesubula ◽  
Rebecca N Nsubuga ◽  
Gershim Asiki ◽  
...  

AbstractGenome-wide association studies (GWAS) for kidney function have uncovered hundreds of risk loci, primarily in populations of European ancestry. We conducted the first GWAS of estimated glomerular filtration rate (eGFR) in Africa in 3288 Ugandans and replicated the findings in 8224 African Americans. We identified two loci associated with eGFR at genome-wide significance (p<5×10−8). The most significantly associated variant (rs2433603, p=2.4×10−9) in GATM was distinct from previously reported signals. A second association signal mapping near HBB (rs141845179, p=3.0×10−8) was not significant after conditioning on a previously reported SNP (rs334) for eGFR. However, fine-mapping analyses highlighted rs141845179 to be the most likely causal variant at the HBB locus (posterior probability of 0.61). A trans-ethnic GRS of eGFR constructed from previously reported lead SNPs was not predictive into the Ugandan population, indicating that additional large-scale efforts in Africa are necessary to gain further insight into the genetic architecture of kidney disease.


2021 ◽  
Author(s):  
Segun Fatumo ◽  
Tinashe Chikowore ◽  
Robert Kalyesubula ◽  
Rebecca N Nsubuga ◽  
Gershim Asiki ◽  
...  

Abstract Genome-wide association studies (GWAS) of kidney function have uncovered hundreds of loci, primarily in populations of European ancestry. We have undertaken the first continental African GWAS of estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We conducted GWAS of eGFR in 3288 East Africans from the Uganda General Population Cohort (GPC) and replicated in 8224 African Americans from the Women’s Health Initiative. Loci attaining genome-wide significant evidence for association (P &lt; 5 × 10−8) were followed up with Bayesian fine-mapping to localize potential causal variants. The predictive power of a genetic risk score (GRS) constructed from previously reported trans-ancestry eGFR lead single nucleotide polymorphism (SNPs) was evaluated in the Uganda GPC. We identified and validated two eGFR loci. At the glycine amidinotransferase (GATM) locus, the association signal (lead SNP rs2433603, P = 1.0 × 10−8) in the Uganda GPC GWAS was distinct from previously reported signals at this locus. At the haemoglobin beta (HBB) locus, the association signal (lead SNP rs141845179, P = 3.0 × 10−8) has been previously reported. The lead SNP at the HBB locus accounted for 88% of the posterior probability of causality after fine-mapping, but did not colocalise with kidney expression quantitative trait loci. The trans-ancestry GRS of eGFR was not significantly predictive into the Ugandan population. In the first GWAS of eGFR in continental Africa, we validated two previously reported loci at GATM and HBB. At the GATM locus, the association signal was distinct from that previously reported. These results demonstrate the value of performing GWAS in continental Africans, providing a rich genomic resource to larger consortia for further discovery and fine-mapping. The study emphasizes that additional large-scale efforts in Africa are warranted to gain further insight into the genetic architecture of CKD.


Author(s):  
Mary Hoekstra ◽  
Hao Yu Chen ◽  
Jian Rong ◽  
Line Dufresne ◽  
Jie Yao ◽  
...  

Objective: Lp(a) (lipoprotein[a]) is an independent risk factor for cardiovascular diseases and plasma levels are primarily determined by variation at the LPA locus. We performed a genome-wide association study in the UK Biobank to determine whether additional loci influence Lp(a) levels. Approach and Results: We included 293 274 White British individuals in the discovery analysis. Approximately 93 095 623 variants were tested for association with natural log-transformed Lp(a) levels using linear regression models adjusted for age, sex, genotype batch, and 20 principal components of genetic ancestry. After quality control, 131 independent variants were associated at genome-wide significance (P ≤5×10 -8 ). In addition to validating previous associations at LPA , APOE , and CETP , we identified a novel variant at the APOH locus, encoding β2GPI (beta2-glycoprotein I). The APOH variant rs8178824 was associated with increased Lp(a) levels (β [95% CI] [ln nmol/L], 0.064 [0.047–0.081]; P =2.8×10 -13 ) and demonstrated a stronger effect after adjustment for variation at the LPA locus (β [95% CI] [ln nmol/L], 0.089 [0.076–0.10]; P =3.8×10 -42 ). This association was replicated in a meta-analysis of 5465 European-ancestry individuals from the Framingham Offspring Study and Multi-Ethnic Study of Atherosclerosis (β [95% CI] [ln mg/dL], 0.16 [0.044–0.28]; P =0.0071). Conclusions: In a large-scale genome-wide association study of Lp(a) levels, we identified APOH as a novel locus for Lp(a) in individuals of European ancestry. Additional studies are needed to determine the precise role of β2GPI in influencing Lp(a) levels as well as its potential as a therapeutic target.


2020 ◽  
Author(s):  
Yuri L. Sosero ◽  
Sara Bandres-Ciga ◽  
Ziv Gan-Or ◽  
Lynne Krohn

AbstractThree family studies identified three different variants in the peptidyl-tRNA hydrolase domain containing 1 gene (PTRHD1) in patients affected by syndromic parkinsonism. In the current study, our objective was to investigate whether PTRHD1 variants are associated with Parkinson’s disease (PD) risk and age at onset (AAO). To evaluate the association between PTRHD1 and PD risk, we analyzed whole genome sequencing (WGS) data of 1,647 PD cases and 1,050 healthy controls, as well as genome-wide imputed genotyping data on 14,671 PD cases and 17,667 controls, all of European ancestry. Furthermore, we examined the association of PTRHD1 with PD risk and AAO using summary statistics data from the most recent PD genome-wide association study (GWAS) meta-analyses. Our results show no association between PTRHD1 and PD risk or AAO. We conclude that PTRHD1 does not play a major role in PD in the European population. Further large-scale studies including subjects with different ancestry and family trios might further clarify the relationship of this gene with PD and atypical parkinsonism.


2019 ◽  
Author(s):  
Kazuyoshi Ishigaki ◽  
Masato Akiyama ◽  
Masahiro Kanai ◽  
Atsushi Takahashi ◽  
Eiryo Kawakami ◽  
...  

INTRODUCTORY PARAGRAPHThe overwhelming majority of participants in current genetic studies are of European ancestry1–3, limiting our genetic understanding of complex disease in non-European populations. To address this, we aimed to elucidate polygenic disease biology in the East Asian population by conducting a genome-wide association study (GWAS) with 212,453 Japanese individuals across 42 diseases. We detected 383 independent signals in 331 loci for 30 diseases, among which 45 loci were novel (P< 5 × 10−8). Compared with known variants, novel variants have lower frequency in European populations but comparable frequency in East Asian populations, suggesting the advantage of this study in discovering these novel variants. Three novel signals were in linkage disequilibrium (r2> 0.6) with missense variants which are monomorphic in European populations (1000 Genomes Project) including rs11235604(p.R220W ofATG16L2, a autophagy-related gene) associated with coronary artery disease. We further investigated enrichment of heritability within 2,868 annotations of genome-wide transcription factor occupancy, andidentified 378 significant enrichments across nine diseases (FDR < 0.05) (e.g. NF-κB for immune-related diseases). This large-scale GWAS in a Japanese population provides insights into the etiology of common complex diseases and highlights the importance of performing GWAS in non-European populations.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Stacy C Brown ◽  
Cameron Both ◽  
Julian N Acosta ◽  
Natalia Szejko ◽  
Victor Torres ◽  
...  

Background: Several genetic susceptibility risk loci for ischemic stroke have been identified. However, the relative dearth of genetic data from populations of non-European ancestry has the potential to create disparities in access to genomics-based precision medicine strategies. Individuals of Native Hawaiian ancestry represent a particularly understudied group in stroke genomics research despite facing high rates of cerebrovascular disease. Hypothesis: Genetic variants associated with stroke differ between Native Hawaiians and previously studied groups of predominantly European ancestry. Methods: We conducted a genome-wide (GW) association study of stroke and myocardial infarction (MI) in an adult population of Native Hawaiian ancestry, using data from the Multiethnic Cohort study (MEC). Genetic information was ascertained via genome-wide array genotyping using the AB OpenArray and TaqMan platforms followed by imputation to 1000 Genomes reference panels. We pursued replication of variants that were GW significant (p<5x10 -8 ) or yielded suggestive associations (p<5x10 -7 ) in the prior stroke GW association study MEGASTROKE. Results: We identified 2,104 individuals (1,089 [51.8%] female) of Native Hawaiian ancestry, including 173 cases and 1,931 controls. We identified one novel susceptibility risk locus at a narrow intronic region located at chromosome q26.2 (top associated SNP 3:169096251, OR 2.48, 95%CI 1.81-3.41; p=1.93x10 -8 ), overlying the MECOM gene. We also identified 9 other suggestive risk loci at p<5x10 -7 . When replicating in MEGASTROKE, q26.2 did not have available counterpart variants to analyze, and 3 out of 9 suggestive signals were associated with ischemic stroke subtypes at p<0.05. Conclusions: We report the first GW association study of ischemic stroke and myocardial infarction in a Native Hawaiian population. We identified one susceptibility risk locus at q26.2, located in a narrow intronic region of MECOM, a gene that codes for a histone-lysine N-methyltransferase that has transcriptional regulation and oncoprotein functions. The lack of available replication data for this locus in the large MEGASTROKE collaboration emphasizes the importance of developing genomic resources across ancestral groups.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0167742 ◽  
Author(s):  
Paul S. de Vries ◽  
Maria Sabater-Lleal ◽  
Daniel I. Chasman ◽  
Stella Trompet ◽  
Tarunveer S. Ahluwalia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document