scholarly journals A DNA methylation-based classifier for accurate molecular diagnosis of bone sarcomas.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 11034-11034
Author(s):  
Shengyang Wu ◽  
Benjamin Thomas Cooper ◽  
Fang Bu ◽  
Christopher Bowman ◽  
Keith Killian ◽  
...  

11034 Background: Bone sarcomas present a unique diagnostic challenge because of the considerable morphologic overlap between different entities. The choice of optimal treatment, however, is dependent upon accurate diagnosis. Genome-wide DNA methylation profiling has emerged as a new approach to aid in the diagnosis of brain tumors, with diagnostic accuracy exceeding standard histopathology. In this work we developed and validated a methylation based classifier to differentiate between osteosarcoma, Ewing’s sarcoma, and synovial sarcoma. Methods: DNA methylation status of 482,421 CpG sites in 15 osteosarcoma, 10 Ewing’s sarcoma, and 11 synovial sarcoma samples were measured using the Illumina HumanMethylation450 array. From this training set of 36 samples we developed a random forest classifier using the 400 most differentially methylated CpG sites (FDR q value < 0.001). This classifier was then validated on 10 synovial sarcoma samples from TCGA, 86 osteosarcoma samples from TARGET-OS, and 15 Ewing’s sarcoma from a recently published series (Huertas-Martinez et al., Cancer Letters 2016). Results: Methylation profiling revealed three distinct molecular clusters, each enriched with a single sarcoma subtype. Within the validation cohorts, all samples from TCGA were correctly classified as synovial sarcoma (10/10, sensitivity and specificity 100%). All but one sample from TARGET-OS were classified as osteosarcoma (85/86, sensitivity 98%, specificity 100%) and all but one sample from the Ewing’s sarcoma series was classified as Ewing’s sarcoma (14/15, sensitivity 93%, specificity 100%). The single misclassified osteosarcoma sample was classified as Ewing’s sarcoma, and was later determined to be a misdiagnosed Ewing’s sarcoma based on RNA-Seq demonstrating high EWRS1 and ETV1 expression. An additional clinical sample that was misdiagnosed as a synovial sarcoma by initial histolopathology, was accurately recognized as osteosarcoma by the methylation classifier. Conclusions: Osteosarcoma, Ewing’s sarcoma and synovial sarcoma have distinct epigenetic profiles. Our validated methylation-based classifier can be used to provide an accurate diagnosis when histological and standard techniques are inconclusive.

2007 ◽  
Vol 13 (18) ◽  
pp. 5446-5454 ◽  
Author(s):  
Vaani Garg ◽  
Wendong Zhang ◽  
Pooja Gidwani ◽  
Mimi Kim ◽  
E. Anders Kolb

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi120-vi121
Author(s):  
Mircea Tesileanu ◽  
Pim French ◽  
Marc Sanson ◽  
Alba Ariela Brandes ◽  
Wolfgang Wick ◽  
...  

Abstract BACKGROUND Temozolomide efficacy in high-grade glioma is related to MGMTp methylation. We compared the prognostic and predictive effect of MGMTp between DNA methylation profiling (MGMT-STP27 model) and qMS-PCR in IDH1/2mt anaplastic astrocytoma patients. METHODS The 2x2 factorial design phase III CATNON trial randomized 751 adult patients with newly diagnosed 1p/19q non-codeleted anaplastic glioma to 59.4Gy radiotherapy, radiotherapy with concurrent temozolomide, radiotherapy with 12 cycles of adjuvant temozolomide, or radiotherapy with concurrent and adjuvant temozolomide. MGMTp methylation status was assessed with the MGMT-STP27 model using 850k EPIC data, and qMS-PCR. IDH1/2 mutation status was determined with next-generation sequencing. OS was measured from randomization date. RESULTS We identified 444 IDH1/2mt anaplastic astrocytoma patients. MGMTp was methylated in 365/440 patients (83.0%) with MGMT-STP27 data, and 168/361 patients (46.5%) with qMS-PCR data. The agreement between both modalities is 59.9% (Cohen’s Kappa score 0.229). At database lock, 289 patients with MGMT-STP27 data were alive and 236 patients with qMS-PCR data. The median OS of MGMTp methylated glioma patients was 9.1 yrs [95%CI 7.5-not reached] for the MGMT-STP27 model, and not reached [95%CI 9.1-not reached] for qMS-PCR. For MGMTp unmethylated glioma patients, the median OS was 6.9 yrs [95%CI 6.2-not reached] for the MGMT-STP27 model, and 6.8 yrs [95%CI 6.2-9.7] for qMS-PCR. The HR for OS based on MGMTp methylation was 0.88 [95%CI 0.58-1.31] for the MGMT-STP27 model, and 0.72 [95%CI 0.50-1.03]) for qMS-PCR. The HR for OS after radiotherapy with any temozolomide vs radiotherapy alone for the MGMT-STP27 model was 0.53 [95%CI 0.37-0.78] for MGMTp methylated, and 0.54 [95%CI 0.25-1.18] for MGMTp unmethylated glioma patients; and for MS-PCR was 0.34 [95%CI 0.19-0.61] for MGMTp methylated, and 0.53 [95%CI 0.33-0.85] for MGMTp unmethylated glioma patients. CONCLUSION MGMTp methylation, regardless of assay, was neither prognostic nor predictive for outcome to temozolomide in IDH1/2mt anaplastic astrocytoma patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Li ◽  
Siyuan Li ◽  
Ying Hu ◽  
Guolei Cao ◽  
Siyao Wang ◽  
...  

Objective. We investigated the expression levels of both FOSL2 mRNA and protein as well as evaluating DNA methylation in the blood of type 2 diabetes mellitus (T2DM) Uyghur patients from Xinjiang. This study also evaluated whether FOSL2 gene expression had demonstrated any associations with clinical and biochemical indicators of T2DM. Methods. One hundred Uyghur subjects where divided into two groups, T2DM and nonimpaired glucose tolerance (NGT) groups. DNA methylation of FOSL2 was also analyzed by MassARRAY Spectrometry and methylation data of individual units were generated by the EpiTyper v1.0.5 software. The expression levels of FOS-like antigen 2 (FOSL2) and the protein expression levels were analyzed. Results. Significant differences were observed in mRNA and protein levels when compared with the NGT group, while methylation rates of eight CpG units within the FOSL2 gene were higher in the T2DM group. Methylation of CpG sites was found to inversely correlate with expression of other markers. Conclusions. Results show that a correlation between mRNA, protein, and DNA methylation of FOSL2 gene exists among T2DM patients from Uyghur. FOSL2 protein and mRNA were downregulated and the DNA became hypermethylated, all of which may be involved in T2DM pathogenesis in this population.


2010 ◽  
Vol 8 (6) ◽  
pp. 715-725 ◽  
Author(s):  
Rashmi Chugh

Sarcomas originating in the bone represent a challenge for physicians and patients. Because they constitute only 0.2% of all adult malignancies and 6% of pediatric malignancies, resources for studying this disease are often limited.1,2 Nonetheless, significant advancements have been made in the treatment of this disease, and there are ongoing efforts toward improvement. This article discusses recently completed and currently enrolling clinical trials for the 3 most common bone sarcomas: osteosarcoma, Ewing's sarcoma family tumors, and chondrosarcoma.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1271
Author(s):  
Giulia De Riso ◽  
Damiano Francesco Giuseppe Fiorillo ◽  
Annalisa Fierro ◽  
Mariella Cuomo ◽  
Lorenzo Chiariotti ◽  
...  

DNA methylation is a heritable epigenetic mark that plays a key role in regulating gene expression. Mathematical modeling has been extensively applied to unravel the regulatory mechanisms of this process. In this study, we aimed to investigate DNA methylation by performing a high-depth analysis of particular loci, and by subsequent modeling of the experimental results. In particular, we performed an in-deep DNA methylation profiling of two genomic loci surrounding the transcription start site of the D-Aspartate Oxidase and the D-Serine Oxidase genes in different samples (n = 51). We found evidence of cell-to-cell differences in DNA methylation status. However, these cell differences were maintained between different individuals, which indeed showed very similar DNA methylation profiles. Therefore, we hypothesized that the observed pattern of DNA methylation was the result of a dynamic balance between DNA methylation and demethylation, and that this balance was identical between individuals. We hence developed a simple mathematical model to test this hypothesis. Our model reliably captured the characteristics of the experimental data, suggesting that DNA methylation and demethylation work together in determining the methylation state of a locus. Furthermore, our model suggested that the methylation status of neighboring cytosines plays an important role in this balance.


2007 ◽  
Vol 5 (4) ◽  
pp. 449-455 ◽  
Author(s):  
Scott M. Schuetze

Sarcomas of bone are rare malignancies diagnosed in fewer than 3000 individuals yearly in the United States. Ewing's sarcoma and most osteosarcoma are high-grade neoplasms and account for approximately one half of bone sarcoma cases. Fewer than 20% of patients presenting with localized Ewing's sarcoma or osteosarcoma are cured with surgery alone. Current management typically involves collaboration among orthopedic oncologists, medical oncologists, musculoskeletal radiologists, sarcoma pathologists, and radiation oncologists. Modern multidisciplinary management of Ewing's sarcoma and osteosarcoma has improved the cure rate of patients with localized disease to more than 50%. Primary chemotherapy for high-grade bone sarcomas often involves intensive, multiagent regimens, and few secondary chemotherapy options are available to treat refractory or relapsed disease. Patient participation in clinical trials of novel therapies for Ewing's sarcoma and osteosarcoma should be strongly encouraged.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4466-4466
Author(s):  
Margaret Dellett ◽  
Michelle Lazenby ◽  
Alan K Burnett ◽  
Ken I Mills

Abstract Acute myeloid leukemia (AML) accounts for ~30% of adult leukaemia cases and is expected to increase as the population ages, due to median age of onset at ~60 years old. Recent evidence suggests that DNA methylation is actively involved in AML and myelodysplastic syndrome (MDS). Tumor suppressor genes, such as p16, have been shown to be silenced by methylation in AML. However, epigenetic events such as DNA methylation are reversible and therefore targets for chemotherapeutic intervention. It has been reported that ~30% of MDS patients with an abnormal karyotype show normalization of their methylation status after receiving a demethylating drug during early stages of their therapy. The UK NCRI AML16 programme for elderly patients (&gt;60 years old at diagnosis) with AML and high risk MDS has several therapeutic questions for patients considered fit for intensive treatment, one of which is to compare the use of azacytidine demethylation maintenance treatment with no maintenance therapy. Samples were obtained from patients entered into the AML16 trial, at diagnosis and from patients entered into the intensive arm of the trial who were randomized to receive azacytidine maintenance therapy were analyzed for the alterations for genomic methylation. Pyrosequencing was used to determine methylation within 17 CpG sites within p16, MLH1, and MGMT whilst LINE1 was used as a measure of global methylation. To date, approximately 714 patients have been entered into AML16. Of these 195 diagnostic samples have been analyzed, of which 103 were in the intensive arm of the trial. At the second randomization stage, 34 patient samples were analyzed and a further 26 samples were obtained following 3, 6 or 9 courses of azacytidine therapy. Statistical comparison of the methylation levels at each individual CpG or for the averaged CpG in each gene studies indicated that there was no difference whether the sample was derived from bone marrow or peripheral blood. This allowed the direct comparison of peripheral blood samples obtained at 2nd randomization and during azacytidine maintenance courses. Differential levels of methylation at individual CpG within the gene were seen at diagnosis. Higher levels of average p16 methylation were observed in the AML patients when compared to a small cohort of “well elderly” individuals. No difference was noted in the individual or averaged CpG methylation status for MGMT or LINE1 during the maintenance course of azacytidine. However, the methylation status of the CpG sites within the p16 and MLH1 genes reduced during maintenance by a median of 19% and 25% respectively. However, the number of patients completing three courses of azacytidine was only about 20% of those entering the intensive arm of AML16, however sequential samples from the same individual also showed demethylation of the CpG sites in p16 and MLH1. This study shows that azacytidine maintenance therapy in elderly AML patients does reduce the methylation status of some genes whilst others genes show no response. This is being investigated further using arrays containing 12,000 CpG sites which will be correlated with gene expression microarrays on the diagnostic samples from AML16.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3549-3549
Author(s):  
Yang Xi ◽  
Velizar Shivarov ◽  
Gur Yaari ◽  
Steven Kleinstein ◽  
Matthew P. Strout

Abstract DNA methylation and demethylation at cytosine residues are epigenetic modifications that regulate gene expression associated with early cell development, somatic cell differentiation, cellular reprogramming and malignant transformation. While the process of DNA methylation and maintenance by DNA methyltransferases is well described, the nature of DNA demethylation remains poorly understood. The current model of DNA demethylation proposes modification of 5-methylcytosine followed by DNA repair-dependent cytosine substitution. Although there is debate on the extent of its involvement in DNA demethylation, activation-induced cytidine deaminase (AID) has recently emerged as an enzyme that is capable of deaminating 5-methylcytosine to thymine, creating a T:G mismatch which can be repaired back to cytosine through DNA repair pathways. AID is expressed at low levels in many tissue types but is most highly expressed in germinal center B cells where it deaminates cytidine to uracil during somatic hypermutation and class switch recombination of the immunoglobulin genes. In addition to this critical role in immune diversification, aberrant targeting of AID contributes to oncogenic point mutations and chromosome translocations associated with B cell malignancies. Thus, to explore a role for AID in DNA demethylation in B cell lymphoma, we performed genome-wide methylation profiling in BL2 and AID-deficient (AID-/-) BL2 cell lines (Burkitt lymphoma that can be induced to express high levels of AID). Using Illumina’s Infinium II DNA Methylation assay combined with the Infinium Human Methylation 450 Bead Chip, we analyzed over 450,000 methylation (CpG) sites at single nucleotide resolution in each line. BL2 AID-/- cells had a median average beta value (ratio of the methylated probe intensity to overall intensity) of 0.76 compared with 0.73 in AID-expressing BL2 cells (P < 0.00001), indicating a significant reduction in global methylation in the presence of AID. Using a delta average beta value of ≥ 0.3 (high stringency cut-off whereby a difference of 0.3 or more defines a CpG site as hypomethylated), we identified 5883 CpG sites in 3347 genes that were hypomethylated in BL2 versus BL2 AID-/- cells. Using the Illumina HumanHT-12 v4 Expression BeadChip and Genome Studio software, we then integrated gene expression and methylation profiles from both lines to generate a list of genes that met the following criteria: 1) contained at least 4 methylation sites within the first 1500 bases downstream of the primary transcriptional start site (TSS 1500; AID is most active in this region during somatic hypermutation); 2) average beta value increased by >0.1 in the TSS 1500 region in BL2 compared with BL2 AID-/- cells; and 3) down-regulated by >50% in BL2 compared with BL2 AID-/- cells. This analysis identified 31 candidate genes targeted for AID-dependent demethylation with consequent changes in gene expression. Interestingly, 15 of these genes have been reported to be bound by AID in association with stalled RNA polymerase II in activated mouse B cells. After validating methylation status in a subset of genes (APOBEC3B, BIN1, DEM1, GRN, GNPDA1) through bisulfite sequencing, we selected DEM1 for further analysis. DEM1 encodes an exonuclease involved in DNA repair and contains 16 CpG sites within its TSS1500, with only one site >50% methylated in BL2 cells compared with 8 of 16 in BL2 AID-/- cells. To assess a direct role for AID in DEM1 methylation status, a retroviral construct (AIDΔL189-L198ER) driving tamoxifen-inducible expression of a C-terminal deletion mutant of AID (increases time spent in the nucleus) was introduced into BL2 AID-/- cells. BL2, BL2 AID-/-, and BL2 AIDΔL189-L198ER cells were cultured continuously for 21 days in the presence of tamoxifen, 100 nM. Bisulfite sequencing of DEM1 TSS 1500 did not demonstrate any significant changes in methylation at day 7. However, at day 21, 13 of the 16 DEM1 TSS 1500 methylation sites in BL2 AIDΔL189-L198ER cells were found to have an increase in the ratio of unmethylated to methylated clones ~10-25% above that of BL2 AID-/- cells. By qPCR, this correlated with a 1.75-fold increase in DEM1 gene expression to levels that were equivalent to that seen in BL2 cells (P = 0.003). Although further investigations are needed, this data supports the notion that AID is able to regulate target gene expression in B cell malignancy through active DNA demethylation. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Lajmi Lakhal-Chaieb ◽  
Celia M.T. Greenwood ◽  
Mohamed Ouhourane ◽  
Kaiqiong Zhao ◽  
Belkacem Abdous ◽  
...  

AbstractWe consider the assessment of DNA methylation profiles for sequencing-derived data from a single cell type or from cell lines. We derive a kernel smoothed EM-algorithm, capable of analyzing an entire chromosome at once, and to simultaneously correct for experimental errors arising from either the pre-treatment steps or from the sequencing stage and to take into account spatial correlations between DNA methylation profiles at neighbouring CpG sites. The outcomes of our algorithm are then used to (i) call the true methylation status at each CpG site, (ii) provide accurate smoothed estimates of DNA methylation levels, and (iii) detect differentially methylated regions. Simulations show that the proposed methodology outperforms existing analysis methods that either ignore the correlation between DNA methylation profiles at neighbouring CpG sites or do not correct for errors. The use of the proposed inference procedure is illustrated through the analysis of a publicly available data set from a cell line of induced pluripotent H9 human embryonic stem cells and also a data set where methylation measures were obtained for a small genomic region in three different immune cell types separated from whole blood.


Sign in / Sign up

Export Citation Format

Share Document