scholarly journals The Expression Level of mRNA, Protein, and DNA Methylation Status of FOSL2 of Uyghur in XinJiang in Type 2 Diabetes

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Li ◽  
Siyuan Li ◽  
Ying Hu ◽  
Guolei Cao ◽  
Siyao Wang ◽  
...  

Objective. We investigated the expression levels of both FOSL2 mRNA and protein as well as evaluating DNA methylation in the blood of type 2 diabetes mellitus (T2DM) Uyghur patients from Xinjiang. This study also evaluated whether FOSL2 gene expression had demonstrated any associations with clinical and biochemical indicators of T2DM. Methods. One hundred Uyghur subjects where divided into two groups, T2DM and nonimpaired glucose tolerance (NGT) groups. DNA methylation of FOSL2 was also analyzed by MassARRAY Spectrometry and methylation data of individual units were generated by the EpiTyper v1.0.5 software. The expression levels of FOS-like antigen 2 (FOSL2) and the protein expression levels were analyzed. Results. Significant differences were observed in mRNA and protein levels when compared with the NGT group, while methylation rates of eight CpG units within the FOSL2 gene were higher in the T2DM group. Methylation of CpG sites was found to inversely correlate with expression of other markers. Conclusions. Results show that a correlation between mRNA, protein, and DNA methylation of FOSL2 gene exists among T2DM patients from Uyghur. FOSL2 protein and mRNA were downregulated and the DNA became hypermethylated, all of which may be involved in T2DM pathogenesis in this population.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiangyun Chang ◽  
Siyuan Li ◽  
Jun Li ◽  
Liang Yin ◽  
Ting Zhou ◽  
...  

Han population is six times as likely as Kazak population to present with type 2 diabetes mellitus (T2DM) in China. We hypothesize that differential expression and CpG methylation of miR-375 may be an ethnic-related factor that influences the incidence of T2DM. The expression level of miR-375 was examined using real-time PCR on Kazak and Han T2DM plasma samples. Furthermore, the methylation levels of CpG sites of miR-375 promoter were determined by MassARRAY Spectrometry in these samples. The relative expression levels of plasma miR-375 in Kazak T2DM samples are 1, and the relative expression levels of plasma miR-375 in Han T2DM samples are 3. The mean level of miR-375 methylation, calculated from the methylation levels of the CpG sites, was 8.47% for the Kazak T2DM group and 10.38% for the Han T2DM group. Further, five CpG units showed a statistically significant difference between Kazak and Han T2DM samples, and, among them, four were hypomethylated and only one CpG unit showed hypermethylation in Kazak T2DM samples. These findings indicate that the expression levels of plasma miR-375 and its CpG methylation in the promoter region are ethnically different, which may contribute to the different incidence of diabetes observed in Kazak and Han populations.


2019 ◽  
Vol 50 (3) ◽  
pp. 91-97
Author(s):  
Zeynep Mine Coskun ◽  
Melike Ersoz ◽  
Mine Adas ◽  
Veysel Sabri Hancer ◽  
Serife Nur Boysan ◽  
...  

2015 ◽  
Vol 18 (2) ◽  
pp. 15-24 ◽  
Author(s):  
S Karachanak-Yankova ◽  
R Dimova ◽  
D Nikolova ◽  
D Nesheva ◽  
M Koprinarova ◽  
...  

Abstract Epigenetic changes, in particular DNA methylation processes, play a role in the pathogenesis and progression of type 2 diabetes mellitus (T2DM) linking genetic and environmental factors. To clarify this role, we have analyzed in patients with different duration of T2DM: (i) expression levels of methyl-CpG-binding domain protein 2 (MBD2) as marker of DNA methylation, and ii) methylation changes in 22 genes connected to cellular stress and toxicity. We have analyzed MBD2 mRNA expression levels in16 patients and 12 controls and the methylation status of stress and toxicity genes in four DNA pools: (i) controls; (ii) newly-diagnosed T2DM patients; (iii) patients with T2DM duration of <5 years and (iv) of >5 years. The MBD2 expression levels were 10.4-times increased on average in T2DM patients compared to controls. Consistent increase in DNA methylation fraction with the increase in T2DM duration was observed in Prdx2 and SCARA3 genes, connected to oxidative stress protection and in BRCA1 and Tp53 tumor-suppressor genes. In conclusion, increased MBD2 expression in patients indicated general dysregulation of DNA methylation in T2DM. The elevated methylation of Prdx2 and SCARA3 genes suggests disturbance in oxidative stress protection in T2DM. The increased methylation of BRCA1 and Tp53 genes unraveled an epigenetic cause for T2DM related increase in cancer risk.


Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Xiaoling Wang ◽  
Yue Pan ◽  
Haidong Zhu ◽  
Guang Hao ◽  
Xin Wang ◽  
...  

Background: Several large-scale epigenome wide association studies on obesity-related DNA methylation changes have been published and in total identified 46 CpG sites. These studies were conducted in middle-aged and older adults of Caucasians and African Americans (AAs) using leukocytes. To what extend these signals are independent of cell compositions as well as to what extend they may influence gene expression have not been systematically investigated. Furthermore, the high prevalence of obesity comorbidities in middle-aged or older population may hide or bias obesity itself related DNA methylation changes. Methods: In this study of healthy AA youth and young adults, genome wide DNA methylation data from leukocytes were obtained from three independent studies: EpiGO study (96 obese cases vs. 92 lean controls, aged 14-21, 50% females, test of interest is obesity status), LACHY study (284 participants from general population, aged 14-18, 50% females, test of interest is BMI), and Georgia Stress and Heart study (298 participants from general population, aged 18-38, 52% females, test of interest is BMI) using the Infinium HumanMethylation450 BeadChip. Genome wide DNA methylation data from purified neutrophils as well as genome wide gene expression data from leukocytes using Illumina HT12 V4 array were also obtained for the EpiGO samples. Results: The meta-analysis on the 3 cohorts identified 76 obesity related CpG sites in leukocytes with p<1х10 -7 . Out of the 46 previously identified CpG sites, 36 can be replicated in this AA youth and young adult sample with same direction and p<0.05. Out of the 107 CpG sites including the 36 replicated ones and the 71 newly identified ones, 71 CpG sites (66%) had their relationship with obesity replicated in purified neutrophils (p<0.05). The analysis on the cis regulation of the 107 CpG sites on gene expression showed that 59 CpG sites had at least one gene within 250kb having expression difference between obese cases and lean controls. Furthermore, out of the 59 CpG sites, 6 showed significantly negative correlations and 1 showed significantly positive correlation with the differentially expressed genes. These CpG sites located in SOCS3, CISH, ABCG1, PIM3 and PTGDS genes. Conclusion: In this study of AA youth and young adults, we identified novel CpG sites associated with obesity and replicated majority of the CpG sites previously identified in middle-aged and older adults. For the first time, we showed that majority of the obesity related CpG sites identified from leukocytes are not driven by cell compositions and provided the direct link between DNA methylation-gene expression-obesity status for 7 CpG sites in 5 genes.


2019 ◽  
Vol 7 (4) ◽  
pp. 191-207 ◽  
Author(s):  
Diana L. Juvinao-Quintero ◽  
Marie-France Hivert ◽  
Gemma C. Sharp ◽  
Caroline L. Relton ◽  
Hannah R. Elliott

Abstract Purpose of Review This review summarises recent advances in the field of epigenetics in order to understand the aetiology of type 2 diabetes (T2D). Recent Findings DNA methylation at a number of loci has been shown to be robustly associated with T2D, including TXNIP, ABCG1, CPT1A, and SREBF1. However, due to the cross-sectional nature of many epidemiological studies and predominant analysis in samples derived from blood rather than disease relevant tissues, inferring causality is difficult. We therefore outline the use of Mendelian randomisation (MR) as one method able to assess causality in epigenetic studies of T2D. Summary Epidemiological studies have been fruitful in identifying epigenetic markers of T2D. Triangulation of evidence including utilisation of MR is essential to delineate causal from non-causal biomarkers of disease. Understanding the causality of epigenetic markers in T2D more fully will aid prioritisation of CpG sites as early biomarkers to detect disease or in drug development to target epigenetic mechanisms in order to treat patients.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3549-3549
Author(s):  
Yang Xi ◽  
Velizar Shivarov ◽  
Gur Yaari ◽  
Steven Kleinstein ◽  
Matthew P. Strout

Abstract DNA methylation and demethylation at cytosine residues are epigenetic modifications that regulate gene expression associated with early cell development, somatic cell differentiation, cellular reprogramming and malignant transformation. While the process of DNA methylation and maintenance by DNA methyltransferases is well described, the nature of DNA demethylation remains poorly understood. The current model of DNA demethylation proposes modification of 5-methylcytosine followed by DNA repair-dependent cytosine substitution. Although there is debate on the extent of its involvement in DNA demethylation, activation-induced cytidine deaminase (AID) has recently emerged as an enzyme that is capable of deaminating 5-methylcytosine to thymine, creating a T:G mismatch which can be repaired back to cytosine through DNA repair pathways. AID is expressed at low levels in many tissue types but is most highly expressed in germinal center B cells where it deaminates cytidine to uracil during somatic hypermutation and class switch recombination of the immunoglobulin genes. In addition to this critical role in immune diversification, aberrant targeting of AID contributes to oncogenic point mutations and chromosome translocations associated with B cell malignancies. Thus, to explore a role for AID in DNA demethylation in B cell lymphoma, we performed genome-wide methylation profiling in BL2 and AID-deficient (AID-/-) BL2 cell lines (Burkitt lymphoma that can be induced to express high levels of AID). Using Illumina’s Infinium II DNA Methylation assay combined with the Infinium Human Methylation 450 Bead Chip, we analyzed over 450,000 methylation (CpG) sites at single nucleotide resolution in each line. BL2 AID-/- cells had a median average beta value (ratio of the methylated probe intensity to overall intensity) of 0.76 compared with 0.73 in AID-expressing BL2 cells (P < 0.00001), indicating a significant reduction in global methylation in the presence of AID. Using a delta average beta value of ≥ 0.3 (high stringency cut-off whereby a difference of 0.3 or more defines a CpG site as hypomethylated), we identified 5883 CpG sites in 3347 genes that were hypomethylated in BL2 versus BL2 AID-/- cells. Using the Illumina HumanHT-12 v4 Expression BeadChip and Genome Studio software, we then integrated gene expression and methylation profiles from both lines to generate a list of genes that met the following criteria: 1) contained at least 4 methylation sites within the first 1500 bases downstream of the primary transcriptional start site (TSS 1500; AID is most active in this region during somatic hypermutation); 2) average beta value increased by >0.1 in the TSS 1500 region in BL2 compared with BL2 AID-/- cells; and 3) down-regulated by >50% in BL2 compared with BL2 AID-/- cells. This analysis identified 31 candidate genes targeted for AID-dependent demethylation with consequent changes in gene expression. Interestingly, 15 of these genes have been reported to be bound by AID in association with stalled RNA polymerase II in activated mouse B cells. After validating methylation status in a subset of genes (APOBEC3B, BIN1, DEM1, GRN, GNPDA1) through bisulfite sequencing, we selected DEM1 for further analysis. DEM1 encodes an exonuclease involved in DNA repair and contains 16 CpG sites within its TSS1500, with only one site >50% methylated in BL2 cells compared with 8 of 16 in BL2 AID-/- cells. To assess a direct role for AID in DEM1 methylation status, a retroviral construct (AIDΔL189-L198ER) driving tamoxifen-inducible expression of a C-terminal deletion mutant of AID (increases time spent in the nucleus) was introduced into BL2 AID-/- cells. BL2, BL2 AID-/-, and BL2 AIDΔL189-L198ER cells were cultured continuously for 21 days in the presence of tamoxifen, 100 nM. Bisulfite sequencing of DEM1 TSS 1500 did not demonstrate any significant changes in methylation at day 7. However, at day 21, 13 of the 16 DEM1 TSS 1500 methylation sites in BL2 AIDΔL189-L198ER cells were found to have an increase in the ratio of unmethylated to methylated clones ~10-25% above that of BL2 AID-/- cells. By qPCR, this correlated with a 1.75-fold increase in DEM1 gene expression to levels that were equivalent to that seen in BL2 cells (P = 0.003). Although further investigations are needed, this data supports the notion that AID is able to regulate target gene expression in B cell malignancy through active DNA demethylation. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Shudong Wang ◽  
Xinzeng Wang

Background. DNA methylation is essential for regulating gene expression, and the changes of DNA methylation status are commonly discovered in disease. Therefore, identification of differentially methylation patterns, especially differentially methylated regions (DMRs), in two different groups is important for understanding the mechanism of complex diseases. Few tools exist for DMR identification through considering features of methylation data, but there is no comprehensive integration of the characteristics of DNA methylation data in current methods. Results. Accounting for the characteristics of methylation data, such as the correlation characteristics of neighboring CpG sites and the high heterogeneity of DNA methylation data, we propose a data-driven approach for DMR identification through evaluating the energy of single site using modified 1D Ising model. Applied to both simulated and publicly available datasets, our approach is compared with other popular methods in terms of performance. Simulated results show that our method is more sensitive than competing methods. Applied to the real data, our method can identify more common DMRs than DMRcate, ProbeLasso, and Wang’s methods with a high overlapping ratio. Also, the necessity of integrating the heterogeneity and correlation characteristics in identifying DMR is shown through comparing results with only considering mean or variance signals and without considering relationship of neighboring CpG sites, respectively. Through analyzing the number of DMRs identified in real data located in different genomic regions, we find that about 90% DMRs are located in CGI which always regulates the expression of genes. It may help us understand the functional effect of DNA methylation on disease.


2011 ◽  
Vol 165 (4) ◽  
pp. 589-595 ◽  
Author(s):  
Anders H Olsson ◽  
Beatrice T Yang ◽  
Elin Hall ◽  
Jalal Taneera ◽  
Albert Salehi ◽  
...  

ObjectiveGene expression alterations, especially in target tissues of insulin, have been associated with type 2 diabetes (T2D). In this study, we examined if genes involved in oxidative phosphorylation (OXPHOS) show differential gene expression and DNA methylation in pancreatic islets from patients with T2D compared with non-diabetic donors.Design and methodsGene expression was analyzed in human pancreatic islets from 55 non-diabetic donors and nine T2D donors using microarray.ResultsWhile the expected number of OXPHOS genes with reduced gene expression is 7.21, we identified 21 downregulated OXPHOS genes in pancreatic islets from patients with T2D using microarray analysis. This gives a ratio of observed over expected OXPHOS genes of 26.37 by aχ2-test withP=2.81×10−7. The microarray data was validated by qRT-PCR for four selected OXPHOS genes:NDUFA5, NDUFA10, COX11, andATP6V1H. All four OXPHOS genes were significantly downregulated in islets from patients with T2D compared with non-diabetic donors using qRT-PCR (P≤0.01). Furthermore, HbAlc levels correlated negatively with gene expression ofNDUFA5, COX11, andATP6V1H(P<0.05). Gene expression ofNDUFA5, NDUFA10, COX11, andATP6V1Hcorrelated positively with glucose-stimulated insulin secretion (P<0.03). Finally, DNA methylation was analyzed upstream of the transcription start forNDUFA5, COX11, andATP6V1H. However, none of the analyzed CpG sites in the three genes showed differences in DNA methylation in islets from donors with T2D compared with non-diabetic donors.ConclusionPancreatic islets from patients with T2D show decreased expression of a set of OXPHOS genes, which may lead to impaired insulin secretion.


Author(s):  
Federica Giambò ◽  
Gian Leone ◽  
Giuseppe Gattuso ◽  
Roberta Rizzo ◽  
Alessia Cosentino ◽  
...  

Environmental or occupational exposure to pesticides is considered one of the main risk factors for the development of various diseases. Behind the development of pesticide-associated pathologies, there are both genetic and epigenetic alterations, where these latter are mainly represented by the alteration in the expression levels of microRNAs and by the change in the methylation status of the DNA. At present, no studies have comprehensively evaluated the genetic and epigenetic alterations induced by pesticides; therefore, the aim of the present study was to identify modifications in gene miRNA expression and DNA methylation useful for the prediction of pesticide exposure. For this purpose, an integrated analysis of gene expression, microRNA expression, and DNA methylation datasets obtained from the GEO DataSets database was performed to identify putative genes, microRNAs, and DNA methylation hotspots associated with pesticide exposure and responsible for the development of different diseases. In addition, DIANA-miRPath, STRING, and GO Panther prediction tools were used to establish the functional role of the putative biomarkers identified. The results obtained demonstrated that pesticides can modulate the expression levels of different genes and induce different epigenetic alterations in the expression levels of miRNAs and in the modulation of DNA methylation status.


Sign in / Sign up

Export Citation Format

Share Document