Patients with myeloproliferative neoplasms (MPN) who later develop ph+ chronic myelogenous leukemia (CML): A case series.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e18563-e18563
Author(s):  
Shahina Patel ◽  
Seo-Hyun Kim ◽  
Jamile M. Shammo ◽  
Jerald P. Radich ◽  
Howard R. Terebelo

e18563 Background: Myeloproliferative Neoplasms are divided by the presence or absence of the Philadelphia Chromosome. Ph- MPN, typically possess driver mutations of JAK-2, MPL and CALR. CALR is involved with apoptosis and cell proliferation . MPL leads to TPO receptor stimulation and mutations are reported as a known cause of AA. JAK-2 mutations render hematopoietic stem cells more sensitive to growth. Though the true incidence is unknown, there are infrequent reports of pts with ET who later develop CML. CALR, MPL and JAK-2 mutations may have some further role in determining whether these are two separate events or clonally derived. We report three pts with MPN who later developed CML. Methods: Chart Review Results: Pt 1 had ET, diagnosed 21 yrs earlier treated with hydroxyurea. He then developed a rising WBC and platelets which necessitated a marrow which detected Ph+ CML. He was CALR positive. NGS was negative for nondriver mutations. Platelets initially declined from 3 million to 975K with TKI and he achieved a MMR. However, the inability to control his thrombocytosis required the addition of ruxolitinib. Pt 2 was diagnosed with ET and was treated with P32. Nine yrs later CML was diagnosed and TKI administration achieved a MMR. Subsequently, a profound anemia evaluation diagnosed PNH requiring eculizumab without benefit and repeat marrow with NGS revealed a MPLmutation and post-ET myelofibrosis. Pt 3 presented with a JAK-2 positive mutation and Polycythemia Vera. After four yrs of hydroxyurea extreme leukocytosis led to a marrow revealing a diagnosis of Ph+ CML. Dasatinib achieved a prompt MMR. NGS revealed KIT D618 V , coinciding with a diagnosis of systemic mastoytosis (SM). Conclusions: The rare observation of patients with both ET and CML have been reported by others with some recent implications of CALR as a common clone with double-mutant properties of CML. Our patients had a lead time of 21, 9, and 4 yrs, all having different mutations. Pts with MPN who develop unexplained leuko or thrombocytosis should be evaluated for CML.We plan to retrieve archival tissue to perform serial genetic analyses. Further work is required to determine whether these events are stochastic or represents clonal evolution.

2021 ◽  
Vol 41 (03) ◽  
pp. 197-205
Author(s):  
Franziska C. Zeeh ◽  
Sara C. Meyer

AbstractPhiladelphia chromosome-negative myeloproliferative neoplasms are hematopoietic stem cell disorders characterized by dysregulated proliferation of mature myeloid blood cells. They can present as polycythemia vera, essential thrombocythemia, or myelofibrosis and are characterized by constitutive activation of JAK2 signaling. They share a propensity for thrombo-hemorrhagic complications and the risk of progression to acute myeloid leukemia. Attention has also been drawn to JAK2 mutant clonal hematopoiesis of indeterminate potential as a possible precursor state of MPN. Insight into the pathogenesis as well as options for the treatment of MPN has increased in the last years thanks to modern sequencing technologies and functional studies. Mutational analysis provides information on the oncogenic driver mutations in JAK2, CALR, or MPL in the majority of MPN patients. In addition, molecular markers enable more detailed prognostication and provide guidance for therapeutic decisions. While JAK2 inhibitors represent a standard of care for MF and resistant/refractory PV, allogeneic hematopoietic stem cell transplantation remains the only therapy with a curative potential in MPN so far but is reserved to a subset of patients. Thus, novel concepts for therapy are an important need, particularly in MF. Novel JAK2 inhibitors, combination therapy approaches with ruxolitinib, as well as therapeutic approaches addressing new molecular targets are in development. Current standards and recent advantages are discussed in this review.


Hematology ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 440-449
Author(s):  
Anand A. Patel ◽  
Olatoyosi Odenike

Abstract The Philadelphia chromosome–negative (Ph−) myeloproliferative neoplasms (MPNs) are a heterogenous group of hematopoietic stem cell diseases characterized by activated JAK/STAT signaling and a variable propensity toward myelofibrotic and leukemic transformation. Acquisition of somatic mutations in addition to the canonical JAK2, MPL, and CALR mutations found in MPNs is an important catalyst in the clonal evolution and progression of these disorders. In recent years, our increasing understanding of the molecular landscape of Ph− MPNs has generated important prognostic information that informs our approach to risk stratification and therapeutic decision-making. This review will focus on the critical impact of genomics on our approach to management of advanced Ph− MPNs.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1962
Author(s):  
Giuseppe G. Loscocco ◽  
Giacomo Coltro ◽  
Paola Guglielmelli ◽  
Alessandro M. Vannucchi

Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are clonal disorders of a hematopoietic stem cell, characterized by an abnormal proliferation of largely mature cells driven by mutations in JAK2, CALR, and MPL. All these mutations lead to a constitutive activation of the JAK-STAT signaling, which represents a target for therapy. Beyond driver ones, most patients, especially with myelofibrosis, harbor mutations in an array of “myeloid neoplasm-associated” genes that encode for proteins involved in chromatin modification and DNA methylation, RNA splicing, transcription regulation, and oncogenes. These additional mutations often arise in the context of clonal hematopoiesis of indeterminate potential (CHIP). The extensive characterization of the pathologic genome associated with MPN highlighted selected driver and non-driver mutations for their clinical informativeness. First, driver mutations are enlisted in the WHO classification as major diagnostic criteria and may be used for monitoring of residual disease after transplantation and response to treatment. Second, mutation profile can be used, eventually in combination with cytogenetic, histopathologic, hematologic, and clinical variables, to risk stratify patients regarding thrombosis, overall survival, and rate of transformation to secondary leukemia. This review outlines the molecular landscape of MPN and critically interprets current information for their potential impact on patient management.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yujie Chen ◽  
Rafee Talukder ◽  
Brian Y. Merritt ◽  
Katherine Y. King ◽  
Marek Kimmel ◽  
...  

Abstract Background We report a patient with Essential Thrombocythemia (ET), subsequently diagnosed with concurrent myeloid and lymphoid leukemia. Generally, the molecular mechanisms underlying leukemic transformation of Philadelphia-negative myeloproliferative neoplasms (Ph-MPN) are poorly understood. Risk of transformation to acute myelogenous leukemia (AML) is low; transformation to both AML and acute lymphoblastic leukemia (ALL) is extremely low. Genetic defects, including allele burden, order of mutation acquisition, clonal heterogeneity and epigenetic mechanisms are important contributors to disease acceleration. Case presentation A 78-year-old Caucasian female originally treated for stable ET, underwent disease acceleration and transition to myeloid sarcoma and B-cell ALL. Genomic reconstruction based on targeted sequencing revealed the presence of a large del(5q) in all three malignancies and somatic driver mutations: TET2, TP53, SF3B1, and ASXL1 at high allele frequency. We propose that the combination of genetic and molecular abnormalities led to hematopoietic stem cell (HSC) injury and disease progression through sub-clone branching. We hypothesize that ancestral reconstruction of genomic data is a useful tool to uncover subclonal events leading to transformation. Conclusions The use of ancestral reconstruction of genomic data sheds light on the unique clinical scenario described in this case report. By determining the mutational profile of tumors at several timepoints and deducing the most parsimonious relationship between them, we propose a reconstruction of their origin. We propose that blast progression originated from subclonal events with malignant potential, which coexisted with but did not originate from JAK2 p.V617F-positive ET. We conclude that the application of genomic reconstruction enhances our understanding of leukemogenesis by identifying the timing of molecular events, potentially leading to better chemotherapy choices as well as the development of new targeted therapies.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1763 ◽  
Author(s):  
Morten Orebo Holmström ◽  
Hans Carl Hasselbalch ◽  
Mads Hald Andersen

Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPN) are neoplastic diseases of the hematopoietic stem cells in the bone marrow. MPN are characterized by chronic inflammation and immune dysregulation. Of interest, the potent immunostimulatory cytokine interferon-α has been used to treat MPN for decades. A deeper understanding of the anti-cancer immune response and of the different immune regulatory mechanisms in patients with MPN has paved the way for an increased perception of the potential of cancer immunotherapy in MPN. Therapeutic vaccination targeting the driver mutations in MPN is one recently described potential new treatment modality. Furthermore, T cells can directly react against regulatory immune cells because they recognize proteins like arginase and programmed death ligand 1 (PD-L1). Therapeutic vaccination with arginase or PD-L1 therefore offers a novel way to directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens like mutant CALR and mutant JAK2. Other therapeutic options that could be used in concert with therapeutic cancer vaccines are immune checkpoint–blocking antibodies and interferon-α. For more advanced MPN, adoptive cellular therapy is a potential option that needs more preclinical investigation. In this review, we summarize current knowledge about the immune system in MPN and discuss the many opportunities for anti-cancer immunotherapy in patients with MPN.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3296
Author(s):  
Ioannis Chanias ◽  
Kristina Stojkov ◽  
Gregor Stehle ◽  
Michael Daskalakis ◽  
Helena Simeunovic ◽  
...  

Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal disorders caused by sequential accumulation of somatic driver mutations in hematopoietic stem and progenitor cells (HSPCs). MDS is characterized by ineffective hematopoiesis with cytopenia, dysplasia, inflammation, and a variable risk of transformation into secondary acute myeloid leukemia. The advent of next-generation sequencing has revolutionized our understanding of the genetic basis of the disease. Nevertheless, the biology of clonal evolution remains poorly understood, and the stochastic genetic drift with sequential accumulation of genetic hits in HSPCs is individual, highly dynamic and hardly predictable. These continuously moving genetic targets pose substantial challenges for the implementation of precision medicine, which aims to maximize efficacy with minimal toxicity of treatments. In the current postgenomic era, allogeneic hematopoietic stem cell transplantation remains the only curative option for younger and fit MDS patients. For all unfit patients, regeneration of HSPCs stays out of reach and all available therapies remain palliative, which will eventually lead to refractoriness and progression. In this review, we summarize the recent advances in our understanding of MDS pathophysiology and its impact on diagnosis, risk-assessment and disease monitoring. Moreover, we present ongoing clinical trials with targeting compounds and highlight future perspectives for precision medicine.


Blood ◽  
1992 ◽  
Vol 79 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
D Jonas ◽  
M Lubbert ◽  
ES Kawasaki ◽  
M Henke ◽  
KJ Bross ◽  
...  

The cytogenetic hallmark of chronic myelogenous leukemia (CML) is the Philadelphia chromosome (Ph1), which reflects a chromosomal translocation t(9;22) and a rearrangement of the ABL and bcr genes. This marker is found in all cells arising from the same malignant precursor cell and can be detected in CML cells of the myeloid, monocytic, erythroid, and B-lymphocyte lineage. It is, however, controversial as to whether T lymphocytes of CML patients carry this gene rearrangement. An answer to this question would clarify whether the translocation in CML occurs in a pluripotent hematopoietic stem cell or in a precursor cell already committed to certain lineages, but not the T-cell lineage. To address this question, we established T-cell clones from peripheral venous blood cells of four patients with CML and screened these clones for bcr-abl fusion transcripts by means of polymerase chain reaction and Southern blot analysis. In four T-cell clones of three of these patients, the bcr-abl transcript could be detected. None of 12 T-cell clones of the fourth patient disclosed detectable bcr-abl amplification product. Both CD4+ as well as CD8+ clones displayed fused bcr-abl sequences. These data imply that in CML some but not all T lymphocytes may originate from the Ph1-positive stem cell.


1991 ◽  
Vol 11 (9) ◽  
pp. 4710-4716
Author(s):  
M Kelliher ◽  
A Knott ◽  
J McLaughlin ◽  
O N Witte ◽  
N Rosenberg

Two forms of activated BCR/ABL proteins, P210 and P185, that differ in BCR-derived sequences, are associated with Philadelphia chromosome-positive leukemias. One of these diseases is chronic myelogenous leukemia, an indolent disease arising in hematopoietic stem cells that is almost always associated with the P210 form of BCR/ABL. Acute lymphocytic leukemia, a more aggressive malignancy, can be associated with both forms of BCR/ABL. While it is virtually certain that BCR/ABL plays a central role in both of these diseases, the features that determine the association of a particular form with a given disease have not been elucidated. We have used the bone marrow reconstitution leukemogenesis model to test the hypothesis that BCR sequences influence the ability of activated ABL to transform different types of hematopoietic cells. Our studies reveal that both P185 and P210 induce a similar spectrum of hematological diseases, including granulocytic, myelomonocytic, and lymphocytic leukemias. Despite the similarity of the disease patterns, animals given P185-infected marrow developed a more aggressive disease after a shorter latent period than those given P210-infected marrow. These data demonstrate that the structure of the BCR/ABL oncoprotein does not affect the type of disease induced by each form of the oncogene but does control the potency of the oncogenic signal.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1037
Author(s):  
Alessandro Allegra ◽  
Giovanni Pioggia ◽  
Alessandro Tonacci ◽  
Marco Casciaro ◽  
Caterina Musolino ◽  
...  

Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR–ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1338-1342 ◽  
Author(s):  
CM Rubin ◽  
RA Larson ◽  
MA Bitter ◽  
JJ Carrino ◽  
MM Le Beau ◽  
...  

Abstract An identical reciprocal translocation between the long arms of chromosomes 3 and 21 with breakpoints in bands 3q26 and 21q22, t(3;21)(q26;q22), was found in three male patients with the blast phase of chronic myelogenous leukemia (CML). The abnormality was clonal in all three patients and was always accompanied by either a standard or variant 9;22 translocation resulting in a Philadelphia chromosome (Ph1). In two cases, the t(3;21) was the only abnormality other than a t(9;22) in the primary clone. Serial studies of one patient demonstrated that the t(3;21) occurred as a result of clonal evolution near the time of development of the blast phase. We have not observed the t(3;21) in greater than 500 patients with CML in the chronic phase. Thus, the t(3;21) is a new recurring cytogenetic abnormality associated with the blast phase of CML.


Sign in / Sign up

Export Citation Format

Share Document