Profiling 523 cancer associated genes in circulating tumor DNA of children with CNS tumors.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3023-3023
Author(s):  
Erin R. Bonner ◽  
Robin Harrington ◽  
Biswajit Das ◽  
Paul M. Williams ◽  
Chris Alan Karlovich ◽  
...  

3023 Background: Pediatric central nervous system (CNS) cancers often pose unique challenges including tumor ‘invisibility’, where surgical resection is restricted due to the sensitive tumor location and tissue biopsy is not always feasible. Detecting cancer associated mutations and copy number variations (CNV) at diagnosis is increasingly important, as the WHO classification of pediatric CNS cancers has incorporated molecular signatures with tumor grade. To achieve CNS tumor molecular ‘visibility’, we previously established a liquid biopsy platform for detecting single nucleotide variants in circulating tumor DNA (ctDNA). However, our method was limited by the restricted number of genes that can be monitored and the inability to detect genomic events including CNVs. To address this, we developed a deep sequencing liquid biopsy approach to profile alterations across selected genes. Our platform provides an opportunity for multi-gene monitoring, to assess tumor subclonal evolution and response to treatment in the absence of repeat tissue biopsies. Methods: We tested the performance of our platform using paired tissue, CSF, and plasma/serum from 10 children with diffuse midline glioma (DMG). ctDNA was analyzed using the TruSight Oncology 500 (TSO500) ctDNA targeted panel covering 523 genes. Matched tumor, CSF, and blood were assessed for concordance and sequencing results were compared to digital droplet PCR (ddPCR) detection of H3K27M mutation. Results: The median exons with ³500X coverage was 96% for 7 CSF samples with optimal input (³60ng), 0.01% for 3 CSF samples with < 5ng input, and 74.5% for plasma/serum samples. ctDNA was more readily detectable in CSF, yet concordance between paired tumor, CSF and plasma/serum was observed. DMG associated mutations in genes including H3F3A, HIST1H3B, TP53, and ACVR1 were detected in ctDNA. Of 9 H3K27M mutations identified in tumor, 8 were present in CSF and 3 in plasma/serum, for a positive percent agreement of 89% and 33%, respectively, with the tumor results. Among CSF samples, H3.3K27M was detected in 6/6 cases, and H3.1K27M in 2/3 cases, with variant allele frequencies comparable to ddPCR results. CNVs including PDGFRA/B and MDM4 amplifications were present in CSF and confirmed by analysis of paired tumor. Additional events, including PIK3CA p.E545Q, PPM1D truncation, and KRAS amplification, were detected in CSF but absent from paired tumor, indicating tissue heterogeneity. Strategies to optimize ctDNA detection, including optimization of ctDNA isolation and adjustment of library QC metrics, were identified. Conclusions: This proof-of-concept study demonstrates the feasibility of our high depth, targeted sequencing approach for detecting clinically relevant mutations in ctDNA from children with CNS tumors. This approach may aid in diagnosis of CNS tumor molecular subtype, and monitoring of tumor evolution and response to therapy in serially collected ctDNA.

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Daphne Li ◽  
Wendy Stellpflug ◽  
Amanda Muhs Saratsis

Abstract INTRODUCTION Diffuse midline gliomas (DMG) are the number one cause of cancer death in children. H3K27M mutations occur in 80% of DMG, with distinct tumor biology and poorer response to treatment. H3K27M is detectable in cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA), depending on CSF tumor proximity, and correlates with tumor volume and treatment response. Ventricular access devices (VAD) for serial CSF sampling (liquid biopsy) could therefore play a significant role in DMG management. Here, we set to characterize VAD placement practices in pediatric DMG. METHODS A retrospective review of patients <21 yr treated for DMG at our institution was performed (1984-2019). A MEDLINE search was conducted to identify reports of VAD placement in DMG. Full-text English reports of patients = 21 yr with VAD outcomes were analyzed. RESULTS A total of 106 DMG patients at our institution were identified. In total 49% had brainstem disease (n = 52). A total of 46.23% (n = 49) had VADs: 32.65% transient (ETV n = 5, EVD n = 11), 67.35% permanent (reservoir n = 7, shunt n = 26). A total of 17 had ETV at biopsy, 7 with concurrent reservoir placement. Of 10 ETV patients without initial reservoir, 5 ultimately underwent permanent VAD placement (reservoir n = 1, shunt n = 4). A total of 9 patients received EVDs at tumor surgery, 8 required EVD for acute hydrocephalus (HCP), with 6 converted to shunts. A total of 15 shunts were placed at tumor diagnosis: 4 required revision (27%). A total of 14 articles describing 240 DMG patients cited HCP in 22%-100%, with VAD placement in 22%-63%, and shunt-induced extraneural metastases in 7. Ventricular chemotherapy via indwelling reservoirs (481 patients) was associated with 29 infectious and 50 noninfectious complications. Standardized reservoir access procedures decreased infection rates. CONCLUSION VAD placement is clinically indicated in a significant proportion of pediatric DMG patients, with low morbidity. Ventricular CSF is superior to lumbar for ctDNA sequencing and quantification. VAD placement should therefore be considered to facilitate liquid biopsy in DMG.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1331
Author(s):  
Adriana Aguilar-Mahecha ◽  
Josiane Lafleur ◽  
Susie Brousse ◽  
Olga Savichtcheva ◽  
Kimberly A. Holden ◽  
...  

Background: Circulating tumor DNA (ctDNA) offers high sensitivity and specificity in metastatic cancer. However, many ctDNA assays rely on specific mutations in recurrent genes or require the sequencing of tumor tissue, difficult to do in a metastatic disease. The purpose of this study was to define the predictive and prognostic values of the whole-genome sequencing (WGS) of ctDNA in metastatic breast cancer (MBC). Methods: Plasma from 25 patients with MBC were taken at the baseline, prior to treatment (T0), one week (T1) and two weeks (T2) after treatment initiation and subjected to low-pass WGS. DNA copy number changes were used to calculate a Genomic Instability Number (GIN). A minimum predefined GIN value of 170 indicated detectable ctDNA. GIN values were correlated with the treatment response at three and six months by Response Evaluation Criteria in Solid Tumours assessed by imaging (RECIST) criteria and with overall survival (OS). Results: GIN values were detectable (>170) in 64% of patients at the baseline and were significantly prognostic (41 vs. 18 months OS for nondetectable vs. detectable GIN). Detectable GIN values at T1 and T2 were significantly associated with poor OS. Declines in GIN at T1 and T2 of > 50% compared to the baseline were associated with three-month response and, in the case of T1, with OS. On the other hand, a rise in GIN at T2 was associated with a poor response at three months. Conclusions: Very early measurements using WGS of cell-free DNA (cfDNA) from the plasma of MBC patients provided a tumor biopsy-free approach to ctDNA measurement that was both predictive of the early tumor response at three months and prognostic.


Author(s):  
Annarita Perillo ◽  
Mohamed Vincenzo Agbaje Olufemi ◽  
Jacopo De Robbio ◽  
Rossella Margherita Mancuso ◽  
Anna Roscigno ◽  
...  

Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.


2021 ◽  
Vol 156 (0) ◽  
pp. 1-7
Author(s):  
Atsushi Imai ◽  
Kiyoshi Misawa ◽  
Satoshi Yamada ◽  
Jun Okamura ◽  
Daiki Mochizuki ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3506-3506
Author(s):  
Andrea Sartore-Bianchi ◽  
Filippo Pietrantonio ◽  
Sara Lonardi ◽  
Benedetta Mussolin ◽  
Francesco Rua ◽  
...  

3506 Background: Despite advances in molecular segmentation of metastatic colorectal cancer (mCRC), beyond RAS status therapeutic actionability remains confined to the limited subgroups of ERBB2 amplified, BRAF mutated and MSI-H patients. Optimization of available treatments is therefore warranted. Rechallenge with anti-EGFR monoclonal antibodies is often empirically used with some benefit as late-line therapy. We previously found that mutant RAS and EGFR ectodomain clones, which emerge in blood during EGFR blockade, decline upon antibody withdrawal leading to regain drug sensitivity. Based on this rationale, we designed CHRONOS, a multicenter phase II trial of anti-EGFR therapy rechallenge guided by monitoring of the mutational status of RAS, BRAF and EGFR in circulating tumor DNA (ctDNA). To our knowledge, this is the first interventional clinical trial of liquid biopsy for driving anti-EGFR rechallenge therapy in mCRC. Methods: Eligible patients were PS ECOG 0-2 RAS/BRAF WT mCRC having first achieved an objective response and then progression in any treatment line with an anti-EGFR antibody containing regimen, displaying RAS, BRAF and EGFR ectodomain WT status in ctDNA at molecular screening after progression to the last anti-EGFR-free regimen. Clonal evolution in ctDNA was analyzed by ddPCR and next generation sequencing. Panitumumab 6 mg/kg was administered IV every two weeks until progression. The primary endpoint was objective response rate (ORR) by RECIST version 1.1 with independent central review. 27 total patients and 6 responses were required to declare the study positive (power = 85%, type I error = 0.05). Results: Between Aug 19, 2019 and Nov 6, 2020 52 patients were screened by liquid biopsy and 36 (69%) were negative in ctDNA for RAS/BRAF/EGFR mutations. Of these, 27 patients were enrolled in 4 centers. Median age was 64 years (range: 42-80). PS ECOG was 0/50%, 1/46%, 2/4%. Previous anti-EGFR was administered in 1st line in 63%, 2nd in 15% and > 2nd in 22%. Median number of previous treatments was 3. The primary endpoint was met, with 8/27 partial responses (PR) observed (2 unconfirmed) (ORR = 30%, 95% CI: 12-47%). Stable disease (SD) was obtained in 11/27 (40%, 95% CI: 24-59%), lasting > 4 months in 8/11. Disease control rate (PR plus SD > 4 months) was therefore obtained in 16/27 (59%, 95% CI: 41-78%). Median progression-free survival was 16 weeks. Median duration of response was 17 weeks (1 ongoing). Maximal grade toxicity was G3, limited to dermatological and occurring in 19% of patients. ctDNA dynamics were studied in all patients. Conclusions: Liquid biopsy-driven rechallenge with anti-EGFR antibodies leads to further objective responses in one third of patients. Genotyping tumor DNA in the blood to direct therapy can be effectively incorporated in the management of advanced CRCs. Clinical trial information: 2016-002597-12.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Anne-Katrin Hickmann ◽  
Maximilian Frick ◽  
Dirk Hadaschik ◽  
Florian Battke ◽  
Markus Bittl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document