Phase I experience with first in class TnMUC1 targeted chimeric antigen receptor T-cells in patients with advanced TnMUC1 positive solid tumors.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14513-e14513
Author(s):  
Rodolfo Gutierrez ◽  
Payal D Shah ◽  
Omid Hamid ◽  
Alfred L. Garfall ◽  
Avery Posey ◽  
...  

e14513 Background: MUC1 is a glycoprotein that is expressed in healthy tissues on the luminal surface of simple and glandular epithelium. In tumors that arise from these cells, an alternate form with aberrant glycosylation is frequently over expressed and distinguishes tumor associated TnMUC1 from normal MUC1. We have generated a novel chimeric antigen receptor (CAR) targeting the TnMUC antigen comprised of a mouse anti-human scFv derived from the monoclonal antibody 5E5 which recognizes the epitope comprising Tn glycan of MUC1, a CD8a transmembrane region and dual CD2 and CD3z intracellular signaling domains. CD2 signaling in T-cells has been demonstrated to result in delayed exhaustion. The novel incorporation of this co-stimulatory domain may lead to enhanced persistence of the CART cells which is believed to be critical for efficacy in solid-tumors. Methods: This is a multi-center first in human Phase I study to evaluate the safety and preliminary efficacy of CART-TnMUC1-Cells for the treatment of solid-tumors. Solid-tumors included in the dose-escalation phase include metastatic treatment-resistant ovarian cancer (OC), pancreatic adenocarcinoma (PC), triple-negative breast cancer (TNBC) or non-small lung cancer (NSCLC). All patients must have TnMUC1 expression as determined by immunohistochemistry. Results: As of January 2021, a total of six patients were treated. Three in Cohort 1 (no lymphodepletion; dose = 1-2 x 107 TDN CART cells; tumors = 1 OC, 1 TNBC and 1 PC) and 3 in Cohort 2 (flu/cy lymphodepletion; dose = 1-2 x 107 TDN CART cells; tumors = 1 NSCLC and 2 OC). None of the patients treated experienced DLT’s. The trial is currently enrolling to Cohort 3 (flu/cy lymphodepletion, 5-6 x 107 TDN). No CRS, neurotoxicity, serious adverse reactions and no on-target/off-tumor toxicity was observed at these dose levels. The most common AE’s were low-grade GI symptoms (e.g., nausea, abdominal pain) in 5/6 patients (83.3%), generalized disorders (e.g., chills, fatigue) in 5/6 (83.3%) and hematologic disorders (e.g., anemia, neutropenia) in 3/6 (50%) of patients. CAR expansion was demonstrated in all patients and was improved in Cohort 2 following LD chemotherapy. Preliminary efficacy assessed by RECIST v1.1 at Day +28 demonstrate SD in all patients in Cohort 2. Conclusions: This is the first report of a novel CART-TnMUC1 construct containing a CD2 co-stimulatory domain that has been used in clinical trials for the treatment of refractory solid-tumor malignancies. While the study is still early in dose-escalation having completed only 2 of 6 planned dose levels there is no evidence of safety concerns or on-target/off-tumor toxicity. Additional safety, efficacy and biomarker data is currently being reviewed and will be presented. Clinical trial information: NCT04025216.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A437-A437
Author(s):  
Elena Garralda ◽  
Ravit Geva ◽  
Eytan Ben-Ami ◽  
Corinne Maurice-Dror ◽  
Emiliano Calvo ◽  
...  

BackgroundAgonistic 4-1BB monoclonal antibodies were preclinically validated as promising cancer immunotherapies, both as monotherapy and as potentiators of the activity of PD-(L)1–blocking agents. However, toxicity and a narrow therapeutic window have hampered their clinical development. DuoBody-PD­-L1×4-1BB, a first-in-class, bispecific, next-generation checkpoint immunotherapy, was designed to overcome these limitations by activating T cells through conditional 4-1BB costimulation, while simultaneously blocking the PD-L1 axis. We present preliminary data from the ongoing, first-in-human, open-label, phase I/IIa trial of DuoBody-PD-L1×4-1BB in advanced solid tumors (NCT03917381).MethodsDuring dose escalation, patients with metastatic or unresectable solid tumors not eligible for standard therapy received flat-dose DuoBody-PD-L1×4-1BB (25–1200 mg) intravenously every 3 weeks until disease progression or unacceptable toxicity. Primary endpoints were dose-limiting toxicities (DLTs) and adverse events (AEs). Secondary endpoints included pharmacokinetic parameters and antitumor activity (RECIST 1.1). Pharmacodynamic biomarkers and antitumor activity (iRECIST) were assessed as exploratory endpoints.ResultsAs of June 22, 2020, 61 patients were enrolled (median age: 59 years). The most common cancer types were colorectal (19.7%), ovarian (14.8%), pancreatic (9.8%), and NSCLC (9.8%). Patients had previously received a median (range) of 3 (1–11) treatments; 44.2% had prior anti-PD-(L)1 immunotherapy. Patients received a median (range) of 4 (1–15) treatment cycles; Cmax was observed shortly after the end of infusion (mean T½: 2.3–10.3 days). Maximum tolerated dose was not reached; 6 patients experienced DLTs. The most common (=10%) treatment-related AEs (all grades; grades 3–4) were transaminase elevation (24.6%; 9.8%), hypothyroidism (16.4%; 1.6%), and fatigue (13.1%; 1.6%). Treatment-related grade-3 transaminase elevations decreased upon corticosteroid administration; no treatment-related bilirubin increases or grade-4 transaminase elevations occurred. Disease control, including stable disease at first assessment and partial responses in triple-negative breast cancer, ovarian cancer, and immune checkpoint inhibitor (ICI)–pretreated NSCLC, occurred in 40/61 patients (65.6%). Pharmacologic activity, as measured by modulation of adaptive immunity mediators, was observed across a broad range of dose levels. Peripheral proliferating (Ki67+) CD8+ effector memory T cells and serum interferon-gamma levels showed maximum induction relative to baseline (p=0.01) 8 days following treatment.ConclusionsDuoBody-PD-L1×4-1BB demonstrated biologic activity and a manageable safety profile. Encouraging early clinical activity across different dose levels was observed in a heavily pretreated population with advanced solid tumors, including those resistant to prior immunotherapy or typically less sensitive to ICIs. Expansion cohorts of patients for whom DuoBody-PD-L1×4-1BB treatment could be relevant and biologically sound have started enrollment. Updated data will be presented.AcknowledgementsThe authors thank Manish Gupta, Lei Pang, and Thomas Breuer at Genmab A/S; Alice Bexon, Alexander Muik, and Friederike Gieseke at BioNTech SE; and Zuzana Jirakova (formerly at BioNTech SE) for their valuable contributions. This trial was funded by Genmab A/S and BioNTech SE.Trial RegistrationClinicalTrials. gov; trial number: NCT03917381Ethics ApprovalThis trial is undertaken following full approval of the final protocol, amendments, informed consent form, applicable recruiting materials, and subject compensation programs by the Independent Ethics Committee/Institutional Review Board.ConsentWritten informed consent, in accordance with principles that originated in the Declaration of Helsinki 2013, current ICH guidelines including ICH-GCP E6(R2), applicable regulatory requirements, and sponsor policy, was provided by the patients.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2547-2547
Author(s):  
Justin C Moser ◽  
Mark Voskoboynik ◽  
Nehal J. Lakhani ◽  
Michael Millward ◽  
Diwakar Davar ◽  
...  

2547 Background: Strong preclinical rationale has emerged for combining checkpoint inhibition (CPI) with T cell costimulatory agonists, particularly CD28, a critical T cell costimulatory molecule recently recognized as a key target of checkpoint inhibition. ALPN-202 is a variant CD80 vIgD-Fc fusion that mediates PD-L1-dependent CD28 costimulation and inhibits the PD-L1 and CTLA-4 checkpoints. It has demonstrated superiority to CPI-only therapies in tumor models, while demonstrating favorable safety in preclinical toxicology studies. Methods: This is a cohort-based, open-label dose escalation and expansion study of ALPN-202 in adults with advanced solid tumors or lymphoma (NCT04186637). Subjects with cancers refractory to standard therapies (including approved CPIs), or cancers without available standard or curative therapy are eligible. After two planned single-subject cohorts, a standard 3+3 dose escalation has been implemented with two dose schedules in parallel, Q1W and Q3W. Objectives include evaluation of safety and tolerability, PK, PD and preliminary anticancer activity of ALPN-202. Disease assessments are evaluated by RECIST v1.1 for solid tumors or by Lugano Classification for lymphoma. Results: As of January 2021, 20 subjects with advanced malignancies have received ALPN-202. Dose-dependent PK and target saturation have been preliminarily observed. So far, ALPN-202 has been well tolerated at dose levels ranging from 0.001 to 1 mg/kg weekly, with no DLTs. Low-grade skin toxicities (grade 1-2 rash) have been observed in 4 subjects (20%). Among 11 evaluable subjects, an unconfirmed partial response has been observed in one subject with colorectal carcinoma, while stable disease has been observed in 5 subjects with colorectal carcinoma, mesothelioma (2), cholangiocarcinoma, and renal cell carcinoma -- for a preliminary clinical benefit (PR+SD) rate of 100% (4/4) at dose levels of 0.3 mg/kg and higher, or 54% (5/11) overall (table). The meeting presentation will update this data, which is expected to include the conclusion of Q1W dose escalation, as well as immune correlates. Conclusions: First-in-human dose escalation with ALPN-202 has been well tolerated at doses capable of engaging CD28 costimulation in vivo in association with dual PD-L1/CTLA-4 checkpoint inhibition, with early signs of anti-tumor activity. These findings suggest that CD28 agonism can be safely achieved in humans, and further suggest that dose expansion with ALPN-202 is warranted to assess the relevance of controlled CD28 costimulation as a novel approach to cancer immunotherapy. Clinical trial information: NCT04186637. [Table: see text]


BMJ Open ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. e034629 ◽  
Author(s):  
Philip George ◽  
Nathaniel Dasyam ◽  
Giulia Giunti ◽  
Brigitta Mester ◽  
Evelyn Bauer ◽  
...  

IntroductionAutologous T-cells transduced to express a chimeric antigen receptor (CAR) directed against CD19 elicit high response rates in relapsed or refractory (r/r) B-cell non-Hodgkin lymphoma (B-NHL). However, r/r B-NHL remissions are durable in fewer than half of recipients of second-generation CAR T-cells. Third-generation (3G) CARs employ two costimulatory domains, resulting in improved CAR T-cell efficacy in vitro and in animal models in vivo. This investigator-initiated, phase I dose escalation trial, termed ENABLE, will investigate the safety and preliminary efficacy of WZTL-002, comprising autologous T-cells expressing a 3G anti-CD19 CAR incorporating the intracellular signalling domains of CD28 and Toll-like receptor 2 (TLR2) for the treatment of r/r B-NHL.Methods and analysisEligible participants will be adults with r/r B-NHL including diffuse large B-cell lymphoma and its variants, follicular lymphoma, transformed follicular lymphoma and mantle cell lymphoma. Participants must have satisfactory organ function, and lack other curative options. Autologous T-cells will be obtained by leukapheresis. Following WZTL-002 manufacture and product release, participants will receive lymphodepleting chemotherapy comprising intravenous fludarabine and cyclophosphamide. A single dose of WZTL-002 will be administered intravenously 2 days later. Targeted assessments for cytokine release syndrome and immune cell effector-associated neurotoxicity syndrome, graded by the American Society Transplantation and Cellular Therapy criteria, will be made. A modified 3+3 dose escalation scheme is planned starting at 5×104 CAR T-cells/kg with a maximum dose of 1×106 CAR T-cells/kg. The primary outcome of this trial is safety of WZTL-002. Secondary outcomes include feasibility of WZTL-002 manufacture and preliminary measures of efficacy.Ethics and disseminationEthical approval for the study was granted by the New Zealand Health and Disability Ethics Committee (reference 19/STH/69) on 23 June 2019 for Protocol V.1.2. Trial results will be reported in a peer-reviewed journal, and results presented at scientific conferences or meetings.Trial registration numberNCT04049513


2020 ◽  
Vol 80 (21) ◽  
pp. 4731-4740 ◽  
Author(s):  
Surya Murty ◽  
Louai Labanieh ◽  
Tara Murty ◽  
Gayatri Gowrishankar ◽  
Tom Haywood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document