Digital PCR-based cell-free DNA K-Ras mutations analysis and clinical implication in pancreatic cancer.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16215-e16215
Author(s):  
Nahid Forouzandeh ◽  
Sachin Srinivasan ◽  
Katia Jurdi ◽  
John Qiang Wang ◽  
Nathan Tofteland ◽  
...  

e16215 Background: Pancreatic cancer is one of the most fatal cancers worldwide. In addition to patients presenting later in the disease, limitations in current testing modalities pose a challenge to early diagnosis and treatment. Somatic mutations of the K-Ras gene have been suggested as a key driver of pancreatic carcinogenesis and thus proposed as a biomarker for diagnosis and therapy. Majority of these studies utilize tissue-based methods for analyzing K-Ras mutations. In recent years, liquid biopsy assay, in particular, analysis of cell-free DNA (cfDNA), has emerged as a promising noninvasive diagnostic approach in oncology, with the respect to the identification of minimal residual diseases, monitoring treatment response, detection recurrence and metastasis, and identification of chemo-resistance mechanisms. The application of digital PCR based plasma cfDNA K-Ras mutation assay in pancreatic cancer has not been reported. Methods: We included patients who underwent evaluation of a pancreatic lesion detected by conventional radiography (CT/MRI) and confirmed by endoscopic ultrasound (EUS) and biopsy. The biopsies from pancreatic tissues were formalin-fixed and paraffin-embedded (FFPE) for pathological diagnosis, and the total DNA was extracted from the FFPE slides. In addition, matched blood from the same patient was collected at the time of biopsy, and plasma cfDNA was extracted. Both DNA quality and concentration were evaluated. 4.0 ng of DNA was used for droplet digital PCR (ddPCR) analysis. K-Ras G12D, G12V, G12R, G12C, G12A, G12S, and G13D mutations were analyzed by multiplexed assay reagents. The sensitivity cut-off of the multiplexed K-Ras G12/G13 assay was 1.0%. Results: cfDNA could be detected in the initiation of pathological diagnosis. Among the twelve patients with pancreatic lesions, eight (67%) were pancreatic ductal adenocarcinoma (PDAC) (head (4), body (2), tail (2) of the pancreas), one was acute pancreatitis, one was a tail cyst and two were unspecified non-malignant lesions. All the eight PDAC (100%) FFPE tissues exhibited K-Ras G12/13 mutations (Scores: 4.2-41.5%), while none of the non-malignant lesions (0%) demonstrated K-Ras mutations. Interestingly, K-Ras mutations were detected from seven of the eight PDAC patient’s plasma cfDNA (87.5%) (Scores: 1.2-20.7%) while the plasma cfDNA from patients with non-malignant lesions did not show any positive K-Ras mutations. Conclusions: Digital PCR-based plasma cfDNA assay for K-Ras mutation is a promising tool for diagnosis of PDAC and is comparable to tissue-based assays. Larger prospective studies can substantiate this and explore their roles in the prediction and early detection of recurrence of PDAC.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gulfem D. Guler ◽  
Yuhong Ning ◽  
Chin-Jen Ku ◽  
Tierney Phillips ◽  
Erin McCarthy ◽  
...  

Abstract Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here, we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by 5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort (n = 64) in comparison with a non-cancer cohort (n = 243). Differential hydroxymethylation is found in thousands of genes, most significantly in genes related to pancreas development or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1, TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inactivation of TP53. Regularized regression models built using 5hmC densities in genes perform with AUC of 0.92 (discovery dataset, n = 79) and 0.92–0.94 (two independent test sets, n = 228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA (AUC = 0.88). These findings suggest that 5hmC changes enable classification of PDAC even during early stage disease.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. TPS464-TPS464
Author(s):  
Hidenori Karasaki ◽  
Yusuke Ono ◽  
Kazuya Koizumi ◽  
Kiyohiro Andoh ◽  
Shingo Asahara ◽  
...  

TPS464 Background: Pancreatic ductal adenocarcinoma (PDA) is still a dismal disease, and there is an urgent need to establish novel tool for early diagnosis of the tumor. There are two main types of pathologically and genetically distinct precursors for PDA — pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasia (IPMN). Non-invasive markers for these precursor lesions have the potential to predict subsequent invasive tumor. Methods: Circulating cell-free DNA (cfDNA) released from tumor cells into the blood has been intensively studied as a novel way to monitor the genetic changes. To detect the cfDNA representing for the initiation and progression of PDA could be of the candidate for them. The role of cfDNA genotyping targeting the major driver mutations in these precursors, such as KRAS and GNAS, are currently under investigation in Japanese patients who have pancreatic tumors (UMIN000012810). The major technical challenge is to specifically detect the small fraction of tumor-derived DNA in patient plasma and urine. Since sequencing of target mutant alleles in cfDNA has a limitation to detect very low frequency variants, we sought to establish protocols for super-sensitive and absolute quantification of the “key drivers” for pancreatic tumor using a droplet digital PCR platform (Bio-Rad; QX200). The primary endpoint of this multi-center prospective analysis is to evaluate whether such an approach can appropriately monitor the risk of IPMN progression and detect localized early-stage PDA. Thirty cases of PDA and 90 cases of IPMN have been enrolled thus far. Detailed protocol for the study and improved technical points to quantify low-frequency variants will be discussed.


2018 ◽  
Author(s):  
Francois Collin ◽  
Yuhong Ning ◽  
Tierney Phillips ◽  
Erin McCarthy ◽  
Aaron Scott ◽  
...  

AbstractPancreatic cancers are typically diagnosed at late stage where disease prognosis is poor as exemplified by a 5-year survival rate of 8.2%. Earlier diagnosis would be beneficial by enabling surgical resection or earlier application of therapeutic regimens. We investigated the detection of pancreatic ductal adenocarcinoma (PDAC) in a non-invasive manner by interrogating changes in 5-hydroxymethylation cytosine status (5hmC) of circulating cell free DNA in the plasma of a PDAC cohort (n=51) in comparison with a non-cancer cohort (n=41). We found that 5hmC sites are enriched in a disease and stage specific manner in exons, 3’UTRs and transcription termination sites. Our data show that 5hmC density is reduced in promoters and histone H3K4me3-associated sites with progressive disease suggesting increased transcriptional activity. 5hmC density is differentially represented in thousands of genes, and a stringently filtered set of the most significant genes points to biology related to pancreas (GATA4, GATA6, PROX1, ONECUT1) and/or cancer development (YAP1, TEAD1, PROX1, ONECUT1, ONECUT2, IGF1 and IGF2). Regularized regression models were built using 5hmC densities in statistically filtered genes or a comprehensive set of highly variable 5hmC counts in genes and performed with an AUC = 0.94-0.96 on training data. We were able to test the ability to classify PDAC and non-cancer samples with the Elastic net and Lasso models on two external pancreatic cancer 5hmC data sets and found validation performance to be AUC = 0.74-0.97. The findings suggest that 5hmC changes enable classification of PDAC patients with high fidelity and are worthy of further investigation on larger cohorts of patient samples.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1599
Author(s):  
Eunsung Jun ◽  
Bonhan Koo ◽  
Eo Jin Kim ◽  
Dae Wook Hwang ◽  
Jae Hoon Lee ◽  
...  

KRAS mutation is a major regulator in the tumor progression of pancreatic cancer. Here, we compared the frequency and mutation burden of KRAS mutation subtypes with paired tumor tissue and blood in patients and examined their clinical significance. DNA from tumor tissues and cell-free DNA (cfDNA) from preoperative blood were obtained from 70 patients with pancreatic cancer. Subtypes and mutation burdens of KRAS G12D and G12V mutations were evaluated using droplet digital PCR. Comparing the presence of mutations in tissue, accumulative and simultaneous mutations of G12D or G12V were identified of 67 (95.7%), and 48 patients (68.6%). Conversely, in blood, they were only identified in 18 (25.7%) and four (5.7%) patients; respectively. Next, comparing the mutation burden in tissue, the mutation burden varied from less than 0.1 to more than five, whereas that of cfDNA in blood was mostly between one and five, as cases with a mutation burden lower than 0.1 and higher than five were rare. Finally, the presence of the G12V mutation alone in cfDNA and the combination of the G12V mutation with elevated CA 19-9 levels were associated with poor recurrence-free survival. These fundamental data on the KRAS mutation subtypes and their clinical significance could support their potential as predictive markers for postoperative recurrence.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1754 ◽  
Author(s):  
Marta Toledano-Fonseca ◽  
M. Teresa Cano ◽  
Elizabeth Inga ◽  
Rosa Rodríguez-Alonso ◽  
M. Auxiliadora Gómez-España ◽  
...  

Liquid biopsy may assist in the management of cancer patients, which can be particularly applicable in pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated the utility of circulating cell-free DNA (cfDNA)-based markers as prognostic tools in metastatic PDAC. Plasma was obtained from 61 metastatic PDAC patients, and cfDNA levels and fragmentation were determined. BEAMing technique was used for quantitative determination of RAS mutation allele fraction (MAF) in cfDNA. We found that the prognosis was more accurately predicted by RAS mutation detection in plasma than in tissue. RAS mutation status in plasma was a strong independent prognostic factor for both overall survival (OS) and progression-free survival (PFS). Moreover, RAS MAF in cfDNA was also an independent risk factor for poor OS, and was strongly associated with primary tumours in the body/tail of the pancreas and liver metastases. Higher cfDNA levels and fragmentation were also associated with poorer OS and shorter PFS, body/tail tumors, and hepatic metastases, whereas cfDNA fragmentation positively correlated with RAS MAF. Remarkably, the combination of CA19-9 with MAF, cfDNA levels and fragmentation improved the prognostic stratification of patients. Furthermore, dynamics of RAS MAF better correlated with patients’ outcome than standard CA19-9 marker. In conclusion, our study supports the use of cfDNA-based liquid biopsy markers as clinical tools for the non-invasive prognosis and monitoring of metastatic PDAC patients.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 14 ◽  
Author(s):  
Mariarita Brancaccio ◽  
Francesco Natale ◽  
Geppino Falco ◽  
Tiziana Angrisano

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancer types world-wide. Its high mortality is related to the difficulty in the diagnosis, which often occurs when the disease is already advanced. As of today, no early diagnostic tests are available, while only a limited number of prognostic tests have reached clinical practice. The main reason is the lack of reliable biomarkers that are able to capture the early development or the progression of the disease. Hence, the discovery of biomarkers for early diagnosis or prognosis of PDAC remains, de facto, an unmet need. An increasing number of studies has shown that cell-free DNA (cfDNA) methylation analysis represents a promising non-invasive approach for the discovery of biomarkers with diagnostic or prognostic potential. In particular, cfDNA methylation could be utilized for the identification of disease-specific signatures in pre-neoplastic lesions or chronic pancreatitis (CP), representing a sensitive and non-invasive method of early diagnosis of PDAC. In this review, we will discuss the advantages and pitfalls of cfDNA methylation studies. Further, we will present the current advances in the discovery of pancreatic cancer biomarkers with early diagnostic or prognostic potential, focusing on pancreas-specific (e.g., CUX2 or REG1A) or abnormal (e.g., ADAMTS1 or BNC1) cfDNA methylation signatures in high risk pre-neoplastic conditions and PDAC.


EBioMedicine ◽  
2019 ◽  
Vol 41 ◽  
pp. 345-356 ◽  
Author(s):  
Xiaoyu Liu ◽  
Lingxiao Liu ◽  
Yuan Ji ◽  
Changyu Li ◽  
Tao Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document