Mathematical Hydrocarbon Fate Modeling in Soil Systems

Author(s):  
Edward J. Calabrese ◽  
Paul T. Kostecki
Keyword(s):  
1993 ◽  
Author(s):  
Kara L. Olen ◽  
Richard J. Fragaszy ◽  
Michael R. Purcell ◽  
Kenneth W. Cargill

1995 ◽  
Vol 32 (3) ◽  
pp. 317-327 ◽  
Author(s):  
P. Cooper ◽  
B. Green

The UK Water Industry first became interested in Reed Bed Treatment Systems for sewage in 1985. Early problems were experienced with soil-based horizontal-flow systems of the Root Zone type. The problems were overcome by national co-ordination of a development programme and international co-operation by an EC Expert Contact Group. A number of different types of systems have now been developed and the systems are now being accepted. The paper reviews the development of these systems for secondary and tertiary treatment and nitrification and mentions development of systems for other forms of treatment. The design changes made to overcome the problems are described. These include the gradual move to the use of gravel-based systems because of the difficulty experienced with over-land flow in the soil systems. The sizing of the systems is described together with performance data for the original horizontal-flow and the more recently developed vertical-flow systems. Treatment at secondary and tertiary levels is illustrated and the potential for nitrification. Early problems with reed growth have been overcome by planting with port-grown seedlings. After 10 years the process is generally accepted by the Water Industry as an appropriate treatment for villages and there are now between 200 and 300 systems in operation.


2021 ◽  
Vol 13 (10) ◽  
pp. 5612
Author(s):  
Shu-Yuan Pan ◽  
Cheng-Di Dong ◽  
Jenn-Feng Su ◽  
Po-Yen Wang ◽  
Chiu-Wen Chen ◽  
...  

Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 158
Author(s):  
Jiang Tian ◽  
Fei Ge ◽  
Dayi Zhang ◽  
Songqiang Deng ◽  
Xingwang Liu

Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications.


2009 ◽  
Vol 28 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Luis Octavio Lagos ◽  
Derrel L. Martin ◽  
Shashi B. Verma ◽  
Andrew Suyker ◽  
Suat Irmak

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Tope O. Bolanle-Ojo ◽  
Abiodun D. Joshua ◽  
Opeyemi A. Agbo-Adediran ◽  
Ademola S. Ogundana ◽  
Kayode A. Aiyeyika ◽  
...  

Conducting binary-exchange experiments is a common way to identify cationic preferences of exchangeable phases in soil. Cation exchange reactions and thermodynamic studies of Pb2+/Ca2+, Cd2+/Ca2+, and Zn2+/Ca2+were carried out on three surface (0–30 cm) soil samples from Adamawa and Niger States in Nigeria using the batch method. The physicochemical properties studies of the soils showed that the soils have neutral pH values, low organic matter contents, low exchangeable bases, and low effective cation exchange capacity (mean: 3.27 cmolc kg−1) but relatively high base saturations (≫50%) with an average of 75.9%. The amount of cations sorbed in all cases did not exceed the soils cation exchange capacity (CEC) values, except for Pb sorption in the entisol-AD2 and alfisol-AD3, where the CEC were exceeded at high Pb loading. Calculated selectivity coefficients were greater than unity across a wide range of exchanger phase composition, indicating a preference for these cations over Ca2+. TheKeqvalues obtained in this work were all positive, indicating that the exchange reactions were favoured and equally feasible. These values indicated that the Ca/soil systems were readily converted to the cation/soil system. The thermodynamic parameters calculated for the exchange of these cations were generally low, but values suggest spontaneous reactions.


Chemosphere ◽  
2021 ◽  
pp. 131166
Author(s):  
Xuehong Yuan ◽  
Taolue Li ◽  
Yangyang He ◽  
Nandong Xue

Sign in / Sign up

Export Citation Format

Share Document