Multiple Roles of Glutathione in the Nervous System

2018 ◽  
pp. 3-23
Author(s):  
Christopher A. Shaw
1998 ◽  
Vol 275 (2) ◽  
pp. G183-G186 ◽  
Author(s):  
V. Pachnis ◽  
P. Durbec ◽  
S. Taraviras ◽  
M. Grigoriou ◽  
D. Natarajan

The enteric nervous system (ENS) in vertebrates is derived from the neural crest and constitutes the most complex part of the peripheral nervous system. Natural and induced mutagenesis in mammals has shown that the tyrosine kinase receptor RET and its functional ligand glial cell line-derived neurotrophic factor (GDNF) play key roles in the development of the ENS in humans and mice. We have developed and briefly describe here a number of assays that analyze the specific function of the RET receptor and its ligand. Our data suggest that the RET signal transduction pathway has multiple roles in the development of the mammalian ENS.


2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Joseph Antony

AbstractMultiple sclerosis (MS) is a debilitating disease that affects millions. There is no known cure for the disease and neither is the cause of the disease known. Recent studies have indicated that it is a multi-factorial disease with several genes involved. Importantly, sunlight and vitamin D have been implicated in the progression of the disease. The pathogenesis of MS chiefly involves loss of oligodendrocytes, which in addition to being killed by inflammatory mediators in the CNS, also succumbs to loss of trophic support from astrocytes. Neurotrophins play an important role in myelination and the cellular prion protein (PrPC) is a key player in this process. Although the physiological roles of PrPC remain to be fully understood, increasing evidence suggests multiple roles for PrPC in regulation of cellular immunity and for its interaction with several neurotrophins that are necessary for homeostasis of the nervous system. This mini-review focuses on the findings establishing a crucial role for PrPC in the neuropathogenesis of MS, emphasizing its neuroprotective role. Since MS is a multi-factorial disease with unknown etiology and no cure, this review aims to highlight endogenous repair mechanisms mediated by PrPC that might contribute to functional recovery in MS patients.


2009 ◽  
Vol 37 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Y Chen ◽  
J Zeng ◽  
Y Chen ◽  
X Wang ◽  
G Yao ◽  
...  

1995 ◽  
Vol 26 (5) ◽  
pp. 425-433 ◽  
Author(s):  
Federico Bussolino ◽  
Raffaella Soldi ◽  
Marco Arese ◽  
Anita Jaranowska ◽  
Valeria Sogos ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11311
Author(s):  
Youri Timsit ◽  
Magali Lescot ◽  
Martha Valiadi ◽  
Fabrice Not

Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.


2020 ◽  
Vol 21 (23) ◽  
pp. 8941
Author(s):  
Seunghyuk Choi ◽  
Dae Ki Hong ◽  
Bo Young Choi ◽  
Sang Won Suh

Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.


2003 ◽  
Vol 24 (3) ◽  
pp. 687-695 ◽  
Author(s):  
Gabor Keresztes ◽  
Hideki Mutai ◽  
Hiroshi Hibino ◽  
A.J Hudspeth ◽  
Stefan Heller

2021 ◽  
Author(s):  
Giacomo Gattoni ◽  
Toby GR Andrews ◽  
Elia Benito Gutierrez

The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that despite the lack of overt segmentation the amphioxus neural tube is highly regionalized at the molecular level. However, little is known about the mechanisms that generate such precise regionalization. Proliferation is a key driver of pattern formation and cell type diversification, but in amphioxus it has never been studied in detail nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos and its contributions to the regionalization of the neural axis. We show that after gastrulation, proliferation pauses to become spatially restricted to the anterior and posterior ends of the neural tube at neurula stages. Only at the onset of larval life, proliferation resumes in the central part of the nervous system. By marking specific populations and inhibiting cell division during neurulation, we demonstrate that proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongate the caudal floor plate. Between these proliferative domains, we find trunk nervous system differentiation is independent from cell division, which decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight multiple roles for proliferation in shaping the amphioxus nervous system.


Sign in / Sign up

Export Citation Format

Share Document