Electromagnetic methods (low frequency)

2019 ◽  
Vol 49 (2) ◽  
pp. 181-194
Author(s):  
Youssef Ait Bahammou ◽  
Ahmed Benamara ◽  
Abdellah Ammar ◽  
Ibrahim Dakir

Abstract Resistivity Profiling and Very Low Frequency (VLF) electromagnetic methods were introduced to study fracture zones detection in Zaouia Jdida locality, within the Errachidia basin. The Horizontal Profiling was conducted in Wenner-α array, with AB = 300 m and profile lines oriented NW–SE and NE–SW. The resistivity measurements were taken using MAE advanced geophysics instruments. The VLF profiles were implanted with the length reaches 1000 m and profile lines oriented in NE–SW direction. The VLF measurements were collected using T-VLF iris instrument and the data filtering was done using KHFFILT software. Two filters, Karous-Hjelt and Fraser, were applied to the real component of the secondary electromagnetic field. The qualitative interpretation of resistivity results, showed the presence of subsurface targets; fracture zones were detected at 70m, 240m and 450m positions along the profile P1, at 180m, 340m and 450m positions from the profile P2. The semi-quantitative interpretation of VLF results revealed the presence of two principal fracture zones at L3 and L5 locations, oriented NW–SE, at a depth range of 30 m to 60 m. The VLF anomaly observed at L3 location is confirmed by the resistivity measurements from the profile P1 (at 70m station). The identified fractures represent the potential zones for groundwater supply and then will have an implication on storage and movement of groundwater in the prospect area.


Author(s):  
Przemysław Łopato ◽  
Grzegorz Psuj ◽  
Michał Herbko ◽  
Michał Maciusowicz

In this paper the results of utilization of electromagnetic methods operating in low and high frequency range for evaluation of stress state and plastic deformation in steel elements are presented. In low frequency range Barkhausen noise and magnetic hysteresis loop method for evaluation of stress level and growth of plastic deformation changes were utilized. The methods allow to monitor parameters related to magnetization process under AC filed. Additionally in this paper the possibility of utilization of high frequency method for estimation of deformation extent (i.e. elongation) caused by stress will be presented. In this experiment the frequency response (the reflection coefficient S11) is measured. The strong relation of antennas resonant frequency to patch dimensions is utilized in order to obtain information about deformation of the sample.


1999 ◽  
Vol 42 (4) ◽  
Author(s):  
B. S. Svetov ◽  
V. V. Ageev

The influence of frequency dispersion of conductivity (induced polarization) of rocks on the results of electromagnetic (EM) sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous halfspace, two, three and multilayered sections were analyzed in frequency and time domains. The calculations for different values of chargeability and time constants of polarization were performed. In the far zone of a source, the IP of rocks led to quasi-wave phenomena. They produced rapid fluctuations of frequency and transient sounding curves (interference phenomena, multireflections in polarizable layers). In the case of transient sounding in the near zone of a source quasistatic distortions prevailed, caused by the counter electromotive force arising in polarizable layers which may lead to strong changes in transient curves. In some cases quasiwave and quasistatic phenomena made EM sounding curves non-interpretable in the class of quasistationary curves over non-dispersive sections. On the other hand, they could increase the resolution and depth of investigation of EM sounding. This was confirmed by an experience of "high-resolution" electroprospecting in Russia. The problem of interpretation of EM sounding data in polarizable sections is nonunique. To achieve uniqueness it is probably necessary to complement them by soundings of other type.


Author(s):  
Irshad S Shaikh ◽  
Dr. Aayyed Haffiyuddin Badurrudin ◽  
Dr. P. L. Salve

Percolation tanks are constructed to conserve the rainwater in large quantities and allow more infiltration in its area of influence. Sometimes due to heavy fracture concentration/thick weathered zone, the water in percolation tank migrates fast in short period and tank becomes dry, which leads to early scarcity conditions. The village karkatta of taluka and district Latur is one such village, where water is provided by constructing two wells in the vicinity of percolation tank. The water level in the percolation tank depletes fast and the tank becomes dry in early summer. Also one cement nala bandhara was constructed in the downstream of the nala. The village is funded by UNICEF to implement MUS (Multiple Water Users) project. The area is surveyed by applying both electrical resistivity methods and low frequency electromagnetic methods in submergence of tank as well as in the downstream of percolation tank. The studies reveal that the leakages are due to thick vesicular basalt followed by fractured massive basalt. Suitable remedial measures are recommended to slow down the subsurface flow so as to improve the performance of the percolation tank.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Robert E. Nordquist ◽  
J. Hill Anglin ◽  
Michael P. Lerner

A human breast carcinoma cell line (BOT-2) was derived from an infiltrating duct carcinoma (1). These cells were shown to have antigens that selectively bound antibodies from breast cancer patient sera (2). Furthermore, these tumor specific antigens could be removed from the living cells by low frequency sonication and have been partially characterized (3). These proteins have been shown to be around 100,000 MW and contain approximately 6% hexose and hexosamines. However, only the hexosamines appear to be available for lectin binding. This study was designed to use Concanavalin A (Con A) and Ricinus Communis (Ricin) agglutinin for the topagraphical localization of D-mannopyranosyl or glucopyranosyl and D-galactopyranosyl or DN- acetyl glactopyranosyl configurations on BOT-2 cell surfaces.


Sign in / Sign up

Export Citation Format

Share Document