An Integrated Approach for Fault Detection, Classification and Location in Medium Voltage Underground Cables

Author(s):  
M. Karthikeyan ◽  
R. Rengaraj
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3843
Author(s):  
Sultan Sh. Alanzi ◽  
Rashad M. Kamel

This paper investigates the maximum photovoltaic (PV) penetration limits on both overhead lines and underground cables medium voltage radial distribution system. The maximum PV penetration limit is estimated considering both bus voltage limit (1.05 p.u.) and feeder current ampacity (1 p.u.). All factors affect the max PV penetration limit are investigated in detail. Substation voltage, load percentage, load power factor, and power system frequency (50 Hz or 60 Hz) are analyzed. The maximum PV penetration limit associated with overhead lines is usually higher than the value associated with the underground cables for high substation voltage (substation voltage = 1.05 and 1.04 p.u.). The maximum PV penetration limit decreases dramatically with low load percentage for both feeder types but still the overhead lines accept PV plant higher than the underground cables. Conversely, the maximum PV penetration increases with load power factor decreasing and the overhead lines capability for hosting PV plant remains higher than the capability of the underground cables. This paper proved that the capability of the 60-Hz power system for hosting the PV plant is higher than the capability of 50 Hz power system. MATLAB software has been employed to obtain all results in this paper. The Newton-Raphson iterative method was the used method to solve the power flow of the investigated systems.


2016 ◽  
Vol 52 (1) ◽  
pp. 740-750 ◽  
Author(s):  
John A. Kay ◽  
G. Amjad Hussain ◽  
Matti Lehtonen ◽  
Lauri Kumpulainen

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 649 ◽  
Author(s):  
Hongshan Zhao ◽  
Weitao Zhang ◽  
Yan Wang

Modelling and estimating power-line communication (PLC) channels are complicated issues due to the complex network topologies, various junctions, and changeable loads. This paper focuses on the frequency response characteristics (FRCs) of medium-voltage (MV) PLC networks with special consideration of two scenarios that are often neglected but generally exist. In the first scenario, the MV distribution network is of the ring topology. In the second scenario, the MV overhead lines and underground cables join at junctions, and the shields of underground cables are grounded with nonzero grounding impedances at the junctions. These conditions lead to the failure of currently popular methods to different degrees. For this reason, we developed an effective method to calculate the FRCs of distribution networks for PLC applications. With this method, the frequency responses of nodes are simply expressed as the binary function of the overall tube propagation matrix and overall node scattering matrix, which is convenient for calculations and analyses. The proposed method was validated by the agreement between the calculated and measured FRCs. The results of two test examples showed that the proposed method performed better in comparison with the traditional approximate method when nonideal grounding conditions were taken into account. The proposed method is also independent of the network topology, so it can adapt to the dynamic changes of the network structure.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 571 ◽  
Author(s):  
Hongshan Zhao ◽  
Weitao Zhang ◽  
Yan Wang

The characteristic impedance of a power line is an important parameter in power line communication (PLC) technologies. This parameter is helpful for understanding power line impedance characteristics and achieving impedance matching. In this study, we focused on the characteristic impedance matrices (CIMs) of the medium-voltage (MV) cables. The calculation and characteristics of the CIMs were investigated with special consideration of the grounded shields and armors, which are often neglected in current research. The calculation results were validated through the experimental measurements. The results show that the MV underground cables with multiple grounding points have forward and backward CIMs, which are generally not equal unless the whole cable structure is longitudinally symmetrical. Then, the resonance phenomenon in the CIMs was analyzed. We found that the grounding of the shields and armors not only affected their own characteristic impedances but also those of the cores, and the resonance present in the CIMs should be of concern in the impedance matching of the PLC systems. Finally, the effects of the grounding resistances, cable lengths, grounding point numbers, and cable branch numbers on the CIMs of the MV underground cables were discussed through control experiments.


2020 ◽  
Vol 35 (3) ◽  
pp. 1189-1199
Author(s):  
Dorde M. Lekic ◽  
Predrag D. Mrsic ◽  
Bojan B. Erceg ◽  
Cedomir V. Zeljkovic ◽  
Nemanja S. Kitic ◽  
...  

2017 ◽  
Vol 32 (3) ◽  
pp. 1450-1459 ◽  
Author(s):  
Wenhai Zhang ◽  
Xianyong Xiao ◽  
Kai Zhou ◽  
Wilsun Xu ◽  
Yindi Jing

Sign in / Sign up

Export Citation Format

Share Document