Wave-Dielectric Interactions II: Growth Estimates and Existence of Smooth Solutions

Author(s):  
Frederick Bloom
Keyword(s):  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mourad Choulli ◽  
Masahiro Yamamoto

AbstractUniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard [Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York, 1953], these kind of problems are known to be ill-posed and even severely ill-posed. Until now, there are only few partial results concerning the quantification of the stability of parabolic Cauchy problems. We bring in the present work an answer to this issue for smooth solutions under the minimal condition that the domain is Lipschitz.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Li Li ◽  
Yanping Zhou

Abstract In this work, we consider the density-dependent incompressible inviscid Boussinesq equations in $\mathbb{R}^{N}\ (N\geq 2)$ R N ( N ≥ 2 ) . By using the basic energy method, we first give the a priori estimates of smooth solutions and then get a blow-up criterion. This shows that the maximum norm of the gradient velocity field controls the breakdown of smooth solutions of the density-dependent inviscid Boussinesq equations. Our result extends the known blow-up criteria.


2019 ◽  
Vol 150 (6) ◽  
pp. 2776-2814 ◽  
Author(s):  
Theodore D. Drivas ◽  
Darryl D. Holm

AbstractSmooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems.


1958 ◽  
Vol 36 (12) ◽  
pp. 1624-1633 ◽  
Author(s):  
W. R. Dixon ◽  
J. H. Aitken

The problem of making resolution corrections in the scintillation spectrometry of continuous X rays is discussed. Analytical solutions are given to the integral equation which describes the effect of the statistical spread in pulse height. The practical necessity of making some kind of numerical analysis is pointed out. Difficulties with numerical methods arise from the fact that the observed pulse-height distribution cannot be defined precisely. As a result it is possible in practice only to find smooth "solutions". Additional difficulties arise if the numerical method is based on an invalid analytical procedure. For example matrix inversion is of doubtful value in making the resolution correction because there does not appear to be an inverse kernel for the integral equation in question.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Nikolaos S. Papageorgiou ◽  
Andrea Scapellato

AbstractWe consider a Robin problem driven by the (p, q)-Laplacian plus an indefinite potential term. The reaction is either resonant with respect to the principal eigenvalue or $$(p-1)$$ ( p - 1 ) -superlinear but without satisfying the Ambrosetti-Rabinowitz condition. For both cases we show that the problem has at least five nontrivial smooth solutions ordered and with sign information. When $$q=2$$ q = 2 (a (p, 2)-equation), we show that we can slightly improve the conclusions of the two multiplicity theorems.


2006 ◽  
Vol 03 (02) ◽  
pp. 269-295 ◽  
Author(s):  
OLIVIER GUES ◽  
JEFFREY RAUCH

Semilinear hyperbolic problems with source terms piecewise smooth and discontinuous across characteristic surfaces yield similarly piecewise smooth solutions. If the discontinuous source is replaced with a smooth transition layer, the discontinuity of the solution is replaced by a smooth internal layer. In this paper we describe how the layer structure of the solution can be computed from the layer structure of the source. The key idea is to use a transmission problem strategy for the problem with the smooth internal layer. That leads to an anastz different from the obvious candidates. The obvious candidates lead to overdetermined equations for correctors. With the transmission problem strategy we compute infinitely accurate expansions.


Sign in / Sign up

Export Citation Format

Share Document