Modified Ultrasonic Machining Process

Author(s):  
Rupinder Singh ◽  
Sudhir Kumar
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1405
Author(s):  
Jian-Guo Zhang ◽  
Zhi-Li Long ◽  
Wen-Ju Ma ◽  
Guang-Hao Hu ◽  
Yang-Min Li

Ultrasonic transducer is a piezoelectric actuator that converts AC electrical energy into ultrasonic mechanical vibration to accelerate the material removal rate of workpiece in rotary ultrasonic machining (RUM). In this study, an impedance model of the ultrasonic transducer is established by the electromechanical equivalent approach. The impedance model not only facilitates the structure design of the ultrasonic transducer, but also predicts the effects of different mechanical structural dimensions on the impedance characteristics of the ultrasonic transducer. Moreover, the effects of extension length of the machining tool and the tightening torque of the clamping nut on the impedance characteristics of the ultrasonic transducer are investigated. Finally, through experimental analysis, the impedance transfer function with external force is established to analyze the dynamic characteristics of machining process.


2018 ◽  
Vol 223 ◽  
pp. 01021
Author(s):  
Oana Dodun ◽  
Ema Panaite ◽  
Petru Duşa ◽  
Gheorghe Nagît ◽  
Margareta Coteată ◽  
...  

Ultrasonic abrasive cavitational machining is a nonconventional machining method applied to remove surfaces in workpieces made of brittle, hard, or non-conductive materials that cannot be efficiently machined by other classical or nonconventional machining methods. Among the factors that can affect the values of the parameters of technological interest for the ultrasonic machining process, the relative pressure between the ultrasonic tool and the workpiece surface to be machined could be considered. The main objective of the research presented in this paper was to analyze the possibilities of selecting the most convenient solution among many such available solutions to ensure the tool feed motion, when designing a device for achieving an ultrasonic drilling process. At present, this selection could be achieved by means of an optimal selection method. Taking into consideration some functional requirements of the device, the method of analytic hierarchy process and the axiomatic design theory were used to solve some problems met in the design process.


1996 ◽  
Vol 118 (3) ◽  
pp. 376-381 ◽  
Author(s):  
Z. Y. Wang ◽  
K. P. Rajurkar

This paper presents a dynamic analysis of the ultrasonic machining process based on impact mechanics. Equations representing the dynamic contact force and stresses caused by the impinging of abrasive grits on the work, are obtained by solving the three-dimensional equations of motion. The factors affecting the material removal rate have been studied. It is found that the theoretical estimates obtained from the dynamic model are in good agreement with the experimental results.


Author(s):  
Zhichao Li ◽  
Liang-Wu Cai ◽  
Z. J. Pei ◽  
Clyde Treadwell

Rotary ultrasonic machining (RUM), a hybrid machining process that combines diamond grinding and ultrasonic machining, has been utilized as a cost-effective material removal method for hard-to-machine materials such as advanced ceramics. In this study, the stress and deformation fields in a ceramic workpiece (92% Al2O3) and the formation of edge chipping during RUM process are investigated using finite element method. Based on a simplified model of RUM process, a three-dimensional finite element model is constructed using axisymmetric eight-node quadrilateral element. In the finite element model, the areas of the workpiece bottom surface that are in contact with the fixture are defined as boundaries of zero displacement in normal direction. A static load is applied to the cutting zone, which is the contact area between the tool’s end face and the bottom surface of the machined slot in the workpiece. The value of the load is calculated from experimental measurements using a dynamometer. Using this model, the maximum von Mises stresses are computed. Initiation and location of the crack, which leads to chipping in RUM process, are also analyzed and compared with experimental results observed under a microscope.


2021 ◽  
Vol 309 ◽  
pp. 01156
Author(s):  
Bikash Banerjee ◽  
Arindam Chakraborty ◽  
Somnath Das ◽  
Debabrata Dhupal

Metal matrix is highly acceptable composites providing good strength for industrial use. In many field of industries, especially aerospace industry metal matrix composites of type Al/SiC is used because of its superior properties. In this research work, experimentalanalysis has been done for producing through hole on metal matrix composites with suitable quality ultrasonic machining (USM) process. Three unconstrained process parameters are chosen, like abrasive slurry concentration, power rating sand tool feed rate. Material removal rate (MRR) is considered as response parameter. The effects of each parameter have been analyzed here. Analysis of variance (ANOVA) has also been applied to identify the most significant factor. Response surface methodology (RSM) has been utilized to developed empirical model for determine the performance of ultrasonic process. Optimization technique has been used to find out the maximum process MRR. Confirmation verification test has been done to improve optimal parametric condition for getting maximum MRR. This research paper gives viability application of USM process for producing of through hole on metal matrix composites and various applications in industry.


Sign in / Sign up

Export Citation Format

Share Document