An Interferometric Platform for Static, Quasi-Static, and Dynamic Evaluation of Out-of-Plane Deformations of MEMS and MOEMS

2019 ◽  
pp. 349-378
Author(s):  
Christophe Gorecki ◽  
Michał Józwik ◽  
Patrick Delobelle
2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


2013 ◽  
Vol 45 ◽  
pp. 689-696 ◽  
Author(s):  
Jing Zhou ◽  
Hong Shen ◽  
Xiang Yu ◽  
Jun Hu ◽  
Zhenqiang Yao

2018 ◽  
Vol 98 (16) ◽  
Author(s):  
Ramon Carrillo-Bastos ◽  
Marysol Ochoa ◽  
Saúl A. Zavala ◽  
Francisco Mireles

2017 ◽  
Author(s):  
Zacharias G. Fthenakis ◽  
George Kalosakas ◽  
Georgios D. Chatzidakis ◽  
Costas Galiotis ◽  
Konstantinos Papagelis ◽  
...  

<div>We introduce a torsional force field for sp<sup>2</sup> carbon to augment an in-plane atomistic potential of a previous work (Kalosakas et al, J. Appl. Phys. 113, 134307 (2013)) so that it is applicable to out-of-plane deformations of graphene and related carbon materials. The introduced force field is fit to reproduce DFT calculation data of appropriately chosen structures. The aim is to create a force field that is as simple as possible so it can be efficient for large scale atomistic simulations of various sp<sup>2</sup> carbon structures without significant loss of accuracy. We show that the complete proposed potential reproduces characteristic properties of fullerenes and carbon nanotubes. In addition, it reproduces very accurately the out-of-plane ZA and ZO modes of graphene’s phonon dispersion as well as all phonons with frequencies up to 1000 cm<sup>−1</sup>.</div>


2000 ◽  
Vol 39 (4) ◽  
pp. 573 ◽  
Author(s):  
Nandigana Krishna Mohan ◽  
Angelica Andersson ◽  
Mikael Sjödahl ◽  
Nils-Erik Molin

Author(s):  
Tianya Wang ◽  
Yihong Wang ◽  
Guiyuan Zeng ◽  
Jianxiong Zhang ◽  
Dan Shi

To investigate the effects of the height-thickness ratio (β) on the mechanical properties and stability coefficients (φs) of interlocking compressed earth block (ICEB) masonry members under axial compression, four groups of specimens with different β of 3.75, 6.75, 11.25, and 14.25 were tested, thereby assessing their stress process, failure mode, compressive strength, and in- and out-of-plane deformations. All the specimens underwent brittle failure under axial compression: the compressive strength was found to decrease in a range from 5.6% to 43% with increasing β, whereas the initial stacking defects and the in- and out-of-plane deformations increased. The specimens became less stable, and we noticed that the overall damage was caused by strength failure and not instability failures. Because the stability coefficient of ICEB-based masonry components cannot be calculated as those of more conventional brickwork, we combined our results with well-established masonry design guidelines and derived an interlocking improvement coefficient.


2015 ◽  
Vol 782 ◽  
pp. 316-325 ◽  
Author(s):  
Kai Liu ◽  
Si Jin Wu ◽  
Xin Ya Gao ◽  
Lian Xiang Yang

Digital speckle pattern interferometry (DSPI) is an advanced technique for both in-plane and out-of-plane deformation measurements of diffuse surfaces in nanoscale. It has been widely used in aerospace engineering and other high-tech industries due to the advantages of non-contact, high-accuracy and full-field measurement. Traditionally, DSPI uses temporal phase shifting method to achieve precise deformation measurement, but it is only suitable for quasi-static deformation. Spatial-carrier method is another effective phase retrieval method used in DSPI and its validity has been verified in some DSPI setups. DSPI with spatial-carrier method enjoys the advantages of simple optical arrangement, easy operation, and above all, high-speed measurement of deformation. This paper introduces a dual-beam spatial-carrier digital speckle pattern interferometry system, with which in-plane and out-of-plane deformations can be measured simultaneously as well as quickly. In the optical setup, two lasers are employed to illuminate the measured object with different illumination angles, and two single-mode fibers server as carriers to transmit the reference beams. In-plane and out-of-plane deformations can be obtained by combining the phase maps of both channels. Theoretical discussion and experimental analysis are both presented.


Sign in / Sign up

Export Citation Format

Share Document