Stability Coefficient of Interlocking Compressed Earth Block Masonry under Axial Compression

Author(s):  
Tianya Wang ◽  
Yihong Wang ◽  
Guiyuan Zeng ◽  
Jianxiong Zhang ◽  
Dan Shi

To investigate the effects of the height-thickness ratio (β) on the mechanical properties and stability coefficients (φs) of interlocking compressed earth block (ICEB) masonry members under axial compression, four groups of specimens with different β of 3.75, 6.75, 11.25, and 14.25 were tested, thereby assessing their stress process, failure mode, compressive strength, and in- and out-of-plane deformations. All the specimens underwent brittle failure under axial compression: the compressive strength was found to decrease in a range from 5.6% to 43% with increasing β, whereas the initial stacking defects and the in- and out-of-plane deformations increased. The specimens became less stable, and we noticed that the overall damage was caused by strength failure and not instability failures. Because the stability coefficient of ICEB-based masonry components cannot be calculated as those of more conventional brickwork, we combined our results with well-established masonry design guidelines and derived an interlocking improvement coefficient.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4267
Author(s):  
Qi Ye ◽  
Yingchun Gong ◽  
Haiqing Ren ◽  
Cheng Guan ◽  
Guofang Wu ◽  
...  

Cross-laminated timber (CLT) elements are becoming increasingly popular in multi-storey timber-based structures, which have long been built in many different countries. Various challenges are connected with constructions of this type. One such challenge is that of stabilizing the structure against vertical loads. However, the calculations of the stability bearing capacity of the CLT members in axial compression in the structural design remains unsolved in China. This study aims to determine the stability bearing capacity of the CLT members in axial compression and to propose the calculation method of the stability coefficient. First, the stability coefficient calculation theories in different national standards were analyzed, and then the stability bearing capacity of CLT elements with four slenderness ratios was investigated. Finally, based on the stability coefficient calculation formulae in the GB 50005-2017 standard and the regression method, the calculation method of the stability coefficient for CLT elements was proposed, and the values of the material parameters were determined. The result shows that the average deviation between fitting curve and calculated results of European and American standard is 5.43% and 3.73%, respectively, and the average deviation between the fitting curve and the actual test results was 8.15%. The stability coefficients calculation formulae could be used to predict the stability coefficients of CLT specimens with different slenderness ratios well.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Walid Edris ◽  
Faris Matalkah ◽  
Bara’ah Rbabah ◽  
Ahmad Abu Sbaih ◽  
Reham Hailat

Abstract This research aims to produce a Compressed Earth Block (CEB) product using locally available soil collected from northern Jordan. The CEB mixture was further stabilized using Portland cement, lime, and sodium silicate. The research significance is based upon the urgent need of most developing countries (e.g. Jordan, Egypt…etc) to build more durable and low-cost houses by using locally available materials. As a result, CEB was identified as a cheap and environmentally friendly construction material. CEB specimens were thoroughly characterized by studying the mechanical properties and durability characteristics. Blocks of 30 x 15 x 8 cm with two holes of 7.5 cm in diameter have a potential for higher enduring, higher compressive strength, better thermal insulation, and lower production cost. Blocks were manufactured with an addition of 8 % for either Portland cement or lime, as well as 2 % of sodium silicate to the soil. The results showed that the addition of 8 % of cement to the CEB achieves satisfactory results in both mechanical and durability properties. Also, the addition of sodium silicate was found to enhance the early-age compressive strength however it affected negatively the durable properties of blocks by increasing the erosion rate and deterioration when exposed to water.


Author(s):  
Rana Faisal Tufail ◽  
Xiong Feng ◽  
Danish Farooq ◽  
Nabil Abdelmelek ◽  
Éva Lublóy

This paper presents experimental versus theoretical comparison of carbon fiber reinforced polymer (CFRP) confined rubberized concrete (a new structural material). A total of sixty six rubberized concrete cylinders were tested in axial compression. The specimens were cast using 0 to 50% rubber replacement. Twenty seven cylinders were then confined with one, two and three layers of CFRP jackets. Axial compression results of the experimental study were compared with the North American and European design guidelines. The results indicate that the addition of rubber content in the concrete leads to premature micro cracking and lateral expansion in concrete. This increased lateral dilation exploited the potential of FRP jackets. The axial compressive strength and strain values for CFRP confined RuC cylinders reached up to unprecedented 600 and 330 percent of unconfined samples. Furthermore, the current international design guidelines developed for conventional concrete confinement failed to predict the compressive strength of rubberized concrete. There is a strong need to re-evaluate the current design codes and their applicability to investigate fiber reinforced confined rubberized concrete. Moreover, the proposed equations in this research can better predict the axial compressive strength of FRP confined RuC.


2020 ◽  
Vol 1 (106) ◽  
pp. 5-16
Author(s):  
W.F. Edris ◽  
Y. Jaradat ◽  
A.O. Al Azzam ◽  
H.M. Al Naji ◽  
S.A. Abuzmero

Purpose: of this paper is to investigate the durability and the mechanical properties, including compressive and flexural strengths, of the locally compressed earth blocks manufactured from soil in Irbid, Jordan. Moreover, effect of volcanic tuff as new stabilizer material on properties of compressed earth block (CEB). Compressed earth block is a technique that was created to solve environmental and economic problems in construction sector. It is widespread in many countries around the world but hasn't been used in Jordan yet. Design/methodology/approach: 9 mixtures were carried out. One of this mixture is the control mix, beside other mixtures were performed by replacing soil with 40%, 10%, 10%, of sand, volcanic tuff, and lime respectively. In addition, polypropylene fibre was used. After 28 days of curing, the CEB were dried in oven at 105ºC for 24 hours then tested. Findings: Show that absorption and erosion were decreased when the lime used in the soil. On the other hand, the fibres presence significantly improved the durability and mechanical properties in all mixtures. Moreover, the higher compressive strength was obtained in the mixtures which contain lime only while the higher tensile strength was obtained in the mixtures which contain lime with sand replacement. The using of volcanic tuffs produced average compressive strength values. The reason is that in the presence of lime and pozzolana (volcanic tuff) reactions take place at low and slow rate at early ages. Research limitations/implications: volcanic tuff can produce favourable compressive strengths at later ages and this is a point of interest in the future work. Originality/value: Searching for a new material as stabilizer material that improves the properties of the compressed earth block (CEB).


2013 ◽  
Vol 48 (1-2) ◽  
pp. 321-336 ◽  
Author(s):  
P. T. Laursen ◽  
N. A. Herskedal ◽  
D. C. Jansen ◽  
B. Qu

Author(s):  
Gregory MacRae ◽  
Chin-Long Lee ◽  
Saul Vazquez-Colunga ◽  
Jian Cui ◽  
Saeid Alizadeh ◽  
...  

A simple and economical design approach is described for a BRB system, consisting of a BRB within a steel frame, subject to in-plane and out-of-plane seismic displacements. The approach avoids out-of-plane system or brace instability while allowing large frame out-of-plane deformations and desirable BRB axial performance. It also limits the compressive/tension force ratio. It is based on the simple concept that a brace will be stable with two moment-releases (hinges) but that an out-of-plane buckling mechanism may occur with more than two. The hinges are detailed as specified deformation zones (SDZs) at the brace ends. The hinges use a plate which can yield about its weak axis during out-of-plane movement. Simple methods to assess the stability of the brace itself (between hinges) are developed, an example is provided illustrating how the monotonic deformation demand of the simple plate hinge can be assessed, and detailing recommendations are made to restrict the deformation of the boundary elements at the brace ends.


2011 ◽  
Vol 1297 ◽  
Author(s):  
T. Nakajima ◽  
K. Shintani

ABSTRACTThe stability of elongated single- and multi-layered graphene nanoribbons (GNRs) are investigated by molecular-dynamics simulation. In order that GNRs are to be modeled as nanobridges connecting two terminals of electronic devices, the short edges of the GNRs are constrained. The distances between the two constrained edges are gradually increased, and the GNRs are uniaxially strained. The energies and out-of-plane deformations of such uniaxially strained GNRs are examined. The energies of multi-layered GNRs will be lower than those of isolated GNRs because the surface areas of multi-layered GNRs are smaller than the total area of the isolated GNRs. Understanding the relationship between the out-of-plane deformations and strain will lead to the control of the ripple structures of GNRs.


Sign in / Sign up

Export Citation Format

Share Document