Role of Monoclonal Antibodies in Understanding the Interactions Between Anti-Phospholipid Antibodies and Phospholipids

2020 ◽  
pp. 107-122
Author(s):  
Joyce Rauch ◽  
Andrew S. Janoff
1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1992 ◽  
Vol 67 (01) ◽  
pp. 111-116 ◽  
Author(s):  
Marcel Levi ◽  
Jan Paul de Boer ◽  
Dorina Roem ◽  
Jan Wouter ten Cate ◽  
C Erik Hack

SummaryInfusion of desamino-d-arginine vasopressin (DDAVP) results in an increase in plasma plasminogen activator activity. Whether this increase results in the generation of plasmin in vivo has never been established.A novel sensitive radioimmunoassay (RIA) for the measurement of the complex between plasmin and its main inhibitor α2 antiplasmin (PAP complex) was developed using monoclonal antibodies preferentially reacting with complexed and inactivated α2-antiplasmin and monoclonal antibodies against plasmin. The assay was validated in healthy volunteers and in patients with an activated fibrinolytic system.Infusion of DDAVP in a randomized placebo controlled crossover study resulted in all volunteers in a 6.6-fold increase in PAP complex, which was maximal between 15 and 30 min after the start of the infusion. Hereafter, plasma levels of PAP complex decreased with an apparent half-life of disappearance of about 120 min. Infusion of DDAVP did not induce generation of thrombin, as measured by plasma levels of prothrombin fragment F1+2 and thrombin-antithrombin III (TAT) complex.We conclude that the increase in plasminogen activator activity upon the infusion of DDAVP results in the in vivo generation of plasmin, in the absence of coagulation activation. Studying the DDAVP induced increase in PAP complex of patients with thromboembolic disease and a defective plasminogen activator response upon DDAVP may provide more insight into the role of the fibrinolytic system in the pathogenesis of thrombosis.


2020 ◽  
Vol 13 (12) ◽  
pp. 451
Author(s):  
Elena Zamagni ◽  
Paola Tacchetti ◽  
Paola Deias ◽  
Francesca Patriarca

The recent introduction of monoclonal antibodies (MoAbs), with several cellular targets, such as CD-38 (daratumumab and isatuximab) and SLAM F7 (elotuzumab), differently combined with other classes of agents, has significantly extended the outcomes of patients with multiple myeloma (MM) in different phases of the disease. Initially used in advanced/refractory patients, different MoAbs combination have been introduced in the treatment of newly diagnosed transplant eligible patients (NDTEMM), showing a significant improvement in the depth of the response and in survival outcomes, without a significant price in terms of toxicity. In smoldering MM, MoAbs have been applied, either alone or in combination with other drugs, with the goal of delaying the progression to active MM and restoring the immune system. In this review, we will focus on the main results achieved so far and on the main on-going trials using MoAbs in SMM and NDTEMM.


2021 ◽  
Vol 14 (2) ◽  
pp. 92
Author(s):  
Panagiotis Gklinos ◽  
Miranta Papadopoulou ◽  
Vid Stanulovic ◽  
Dimos D. Mitsikostas ◽  
Dimitrios Papadopoulos

Over the last 30 years the role of monoclonal antibodies in therapeutics has increased enormously, revolutionizing treatment in most medical specialties, including neurology. Monoclonal antibodies are key therapeutic agents for several neurological conditions with diverse pathophysiological mechanisms, including multiple sclerosis, migraines and neuromuscular disease. In addition, a great number of monoclonal antibodies against several targets are being investigated for many more neurological diseases, which reflects our advances in understanding the pathogenesis of these diseases. Untangling the molecular mechanisms of disease allows monoclonal antibodies to block disease pathways accurately and efficiently with exceptional target specificity, minimizing non-specific effects. On the other hand, accumulating experience shows that monoclonal antibodies may carry class-specific and target-associated risks. This article provides an overview of different types of monoclonal antibodies and their characteristics and reviews monoclonal antibodies currently in use or under development for neurological disease.


2017 ◽  
Vol 18 (6) ◽  
pp. 1249 ◽  
Author(s):  
Mauro Cataldi ◽  
Chiara Vigliotti ◽  
Teresa Mosca ◽  
MariaRosaria Cammarota ◽  
Domenico Capone

2018 ◽  
pp. 44-52 ◽  
Author(s):  
N. M. Nenasheva

Eosinophilic asthma is a common phenotype of severe asthma, occurring in at least half of patients. In recent years, there have been significant changes in the approaches to the treatment of severe bronchial asthma and, above all, eosinophilic asthma. The article discusses the role of eosinophils in the pathogenesis of severe asthma, the detection of the phenotype of severe eosinophilic asthma, and modern approaches to targeting severe asthma with an eosinophilic phenotype using biological agents. A special emphasis is placed on preparations of monoclonal antibodies to interleukin-5, in particular, mepolizumab, recently approved for clinical use in our country.


Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 1074-1078
Author(s):  
JM Pesando ◽  
TA Conrad

Serologic studies using four murine monoclonal antibodies specific for the common acute lymphoblastic leukemia antigen (CALLA) and five monoclonal antibodies specific for the gp24 surface antigen indicate that these leukemia-associated antigens are present on cells of comparable tissues in man and in four nonhuman primates. As in man, adherent cell populations obtained from skin, lung, and bone marrow of Macaca fascicularis, M mulatta, M nemestrina, and Papio cynocephalus react with these antibodies. Similarly, granulocytes from both man and these nonhuman primates bind CALLA- and gp24-specific antibodies. Radioimmune precipitation experiments confirm the identity of these antigens. Our studies suggest that nonhuman primates can be used to screen serologic reagents to leukemia-associated antigens for potential toxic effects on normal tissues prior to their use in man. Similarly, nonhuman primates could be employed to assess the possible role of antigen-positive stromal cells in the reconstitution of bone marrow following transplantation.


Sign in / Sign up

Export Citation Format

Share Document