Radius analysis of the distribution mixture of sodium silicate Portland cement grouting material on various types soil of dam foundation

Author(s):  
B. Risharnanda ◽  
S. Soegiarto ◽  
S. Purwaningsih ◽  
A.G. Majdi
2013 ◽  
Vol 838-841 ◽  
pp. 1457-1462
Author(s):  
Chun Lei Xia ◽  
Ying Ye ◽  
Guan Ming Wang ◽  
Li Cui

Silty fine sand is the second smallest sand with a particle diameter ranging from 0.0625 to 0.120 mm.This kind of sand exists in a large amount in Beijing subway excavation project. Due to the poor self-stabilization of this stratum,seeping , sand flow and collapse take place frequently. Grouting materials such as Portland cement and soluble glass (also called sodium silicate) are employed in most of excavation projects to reinforce this sand stratum. However, the reinforcement is not effective, leading to a large amount of accidents in the process of construction. The reason may be attributed to the fact that Portland cement is unable to penetrate into the stratum and the strength of soluble glass (0.6MPa) is too weak to resist the stratum pressure. To solve this problem, a modified microfine cement grouting material able to penetrate into silty fine sand stratum is developed in this paper. A combination of suspension and diluent is used to increase the penetration extension of the grouts,and the experimental results reveal that the addition of the mixture of suspension and diluent in microfine cement grouting materials improves the penetration property substantially.


2019 ◽  
Vol 11 (7) ◽  
pp. 1027-1036
Author(s):  
Junfu Lu ◽  
Senlin Ling ◽  
Xun Wang ◽  
Xiaoqiang Li ◽  
Dagang Liu

2019 ◽  
Vol 138 (2) ◽  
pp. 879-887
Author(s):  
Pavel Krivenko ◽  
Danutė Vaičiukynienė ◽  
Aras Kantautas ◽  
Vitoldas Vaitkevičius ◽  
Evaldas Šerelis

2021 ◽  
pp. 1-44
Author(s):  
Yunxiao Liu ◽  
Jiahang Zhang ◽  
Yinyin Chi

In this study, three different diameters of multi-walled carbon nanotubes (MWCNTs) dispersed by polyvinyl pyrrolidone (PVP) were used to reinforce superfine cement grouting materials. The effect of MWCNTs and polyvinyl pyrrolidone (PVP) on the rheological properties of grouting material were accordingly studied. It was found that the yield stress (τ0) and plastic viscosity (η) were slightly decreased when PVP content was low and increased when the PVP content increased. The effect of MWCNT diameter on τ0 was not found to be clear but was more significant on η. The smaller MWCNT diameter was, the more quickly η increase. It was also found that the thixotropic ring area was increased as the MWCNTs content increased. The addition of PVP and MWCNTs caused an increase in the number of entanglement points in different scales, which was the main reason for the viscosity and thixotropy increase. Therefore, the rheological properties of superfine cement grouting material should be adjusted when MWCNTs were added as a reinforcing component. Due to the wrapping of PVP on cement particles which isolates the contacting part between the water and the cement particles, it slows down the cement's hydration rate thus slows down the fluidity loss of the slurry.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Walid Edris ◽  
Faris Matalkah ◽  
Bara’ah Rbabah ◽  
Ahmad Abu Sbaih ◽  
Reham Hailat

Abstract This research aims to produce a Compressed Earth Block (CEB) product using locally available soil collected from northern Jordan. The CEB mixture was further stabilized using Portland cement, lime, and sodium silicate. The research significance is based upon the urgent need of most developing countries (e.g. Jordan, Egypt…etc) to build more durable and low-cost houses by using locally available materials. As a result, CEB was identified as a cheap and environmentally friendly construction material. CEB specimens were thoroughly characterized by studying the mechanical properties and durability characteristics. Blocks of 30 x 15 x 8 cm with two holes of 7.5 cm in diameter have a potential for higher enduring, higher compressive strength, better thermal insulation, and lower production cost. Blocks were manufactured with an addition of 8 % for either Portland cement or lime, as well as 2 % of sodium silicate to the soil. The results showed that the addition of 8 % of cement to the CEB achieves satisfactory results in both mechanical and durability properties. Also, the addition of sodium silicate was found to enhance the early-age compressive strength however it affected negatively the durable properties of blocks by increasing the erosion rate and deterioration when exposed to water.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1134 ◽  
Author(s):  
Ilda Tole ◽  
Magdalena Rajczakowska ◽  
Abeer Humad ◽  
Ankit Kothari ◽  
Andrzej Cwirzen

An efficient solution to increase the sustainability of building materials is to replace Portland cement with alkali-activated materials (AAM). Precursors for those systems are often based on water-cooled ground granulated blast furnace slags (GGBFS). Quenching of blast furnace slag can be done also by air but in that case, the final product is crystalline and with a very low reactivity. The present study aimed to evaluate the cementitious properties of a mechanically activated (MCA) air-cooled blast furnace slag (ACBFS) used as a precursor in sodium silicate alkali-activated systems. The unreactive ACBFS was processed in a planetary ball mill and its cementing performances were compared with an alkali-activated water-cooled GGBFS. Mixes based on mechanically activated ACBFS reached the 7-days compressive strength of 35 MPa and the 28-days compressive strength 45 MPa. The GGBFS-based samples showed generally higher compressive strength values.


2018 ◽  
Vol 18 (2) ◽  
pp. 413-429 ◽  
Author(s):  
Maristela Gomes da Silva ◽  
Vanessa Gomes ◽  
Marcella Ruschi Mendes Saade

Abstract Life cycle assessment (LCA) provides a comprehensive framework for positioning low energy and global warming potential alternatives regarding Portland cement and concrete. Published LCA work on alkali-activated cements is, however, relatively limited. In this paper, we illustrate how LCA critically supports concrete technological studies in the search for low impact concrete mixes. Previous research on breakwater applications explored replacing a low-clinker Portland cement and natural aggregates with seven different alkali-activated blast furnace slag (bfs) binder systems and with coarse and granulated bfs aggregates. Its outcome suggested a sodium silicate-activated bfs formulation as the best match between concrete properties and environmental regulation compliance. To validate this outcome through LCA, our cradle to gate assessments followed ISO 14044 (INTERNATIONAL…, 2006b) and used Ecoinvent v.2.2 and CML baseline 2001 v.2.05. We adopted the ‘net avoided burden approach’ to handle multifunctionality intrinsic to by-product-based AAC. Whilst sodium silicate-activated mixes rivaled the reference regarding GWP, impacts in several categories were increased. LCA highlighted the implications of driving mix selection by focusing on a single environmental impact category.


2012 ◽  
Vol 629 ◽  
pp. 461-465
Author(s):  
Kazemian Sina ◽  
Moayedi Hossien

The distribution of peat deposits can be found in many countries and peat-land constituents from 5 to 8% of earth land surface, where approximately 60% of the wetlands are peat. An increasing growth of the population leads to the necessity of peat-land utilization for development purposes. This article describes a laboratory study on the effect of sodium silicate on the compressibility parameters of peat, which are settlement, void ratio, compression index and coefficient of secondary compression. The effect of the sodium silicate and ordinary Portland cement on the compressibility parameter of peat is investigated through Rowe Cell consolidation test. At the end of this study, it is shown by increasing sodium silicate (within 2.5%), cement on treated peat, they are able to improve compressibility parameters of fibrous peat much more than conventional binders like pure cement.


Sign in / Sign up

Export Citation Format

Share Document