scholarly journals Characteristics of Hollow Compressed Earth Block Stabilized Using Cement, Lime, and Sodium Silicate

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Walid Edris ◽  
Faris Matalkah ◽  
Bara’ah Rbabah ◽  
Ahmad Abu Sbaih ◽  
Reham Hailat

Abstract This research aims to produce a Compressed Earth Block (CEB) product using locally available soil collected from northern Jordan. The CEB mixture was further stabilized using Portland cement, lime, and sodium silicate. The research significance is based upon the urgent need of most developing countries (e.g. Jordan, Egypt…etc) to build more durable and low-cost houses by using locally available materials. As a result, CEB was identified as a cheap and environmentally friendly construction material. CEB specimens were thoroughly characterized by studying the mechanical properties and durability characteristics. Blocks of 30 x 15 x 8 cm with two holes of 7.5 cm in diameter have a potential for higher enduring, higher compressive strength, better thermal insulation, and lower production cost. Blocks were manufactured with an addition of 8 % for either Portland cement or lime, as well as 2 % of sodium silicate to the soil. The results showed that the addition of 8 % of cement to the CEB achieves satisfactory results in both mechanical and durability properties. Also, the addition of sodium silicate was found to enhance the early-age compressive strength however it affected negatively the durable properties of blocks by increasing the erosion rate and deterioration when exposed to water.

Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


Author(s):  
Tianya Wang ◽  
Yihong Wang ◽  
Guiyuan Zeng ◽  
Jianxiong Zhang ◽  
Dan Shi

To investigate the effects of the height-thickness ratio (β) on the mechanical properties and stability coefficients (φs) of interlocking compressed earth block (ICEB) masonry members under axial compression, four groups of specimens with different β of 3.75, 6.75, 11.25, and 14.25 were tested, thereby assessing their stress process, failure mode, compressive strength, and in- and out-of-plane deformations. All the specimens underwent brittle failure under axial compression: the compressive strength was found to decrease in a range from 5.6% to 43% with increasing β, whereas the initial stacking defects and the in- and out-of-plane deformations increased. The specimens became less stable, and we noticed that the overall damage was caused by strength failure and not instability failures. Because the stability coefficient of ICEB-based masonry components cannot be calculated as those of more conventional brickwork, we combined our results with well-established masonry design guidelines and derived an interlocking improvement coefficient.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1134 ◽  
Author(s):  
Ilda Tole ◽  
Magdalena Rajczakowska ◽  
Abeer Humad ◽  
Ankit Kothari ◽  
Andrzej Cwirzen

An efficient solution to increase the sustainability of building materials is to replace Portland cement with alkali-activated materials (AAM). Precursors for those systems are often based on water-cooled ground granulated blast furnace slags (GGBFS). Quenching of blast furnace slag can be done also by air but in that case, the final product is crystalline and with a very low reactivity. The present study aimed to evaluate the cementitious properties of a mechanically activated (MCA) air-cooled blast furnace slag (ACBFS) used as a precursor in sodium silicate alkali-activated systems. The unreactive ACBFS was processed in a planetary ball mill and its cementing performances were compared with an alkali-activated water-cooled GGBFS. Mixes based on mechanically activated ACBFS reached the 7-days compressive strength of 35 MPa and the 28-days compressive strength 45 MPa. The GGBFS-based samples showed generally higher compressive strength values.


MRS Advances ◽  
2020 ◽  
Vol 5 (25) ◽  
pp. 1285-1294 ◽  
Author(s):  
W Benhaoua ◽  
K. Grine ◽  
S. Kenai

ABSTRACTStabilized earth is a very ancient material that has been used in many countries as a low cost, environment friendly construction material. However, its durability under humid environments is low. Stabilization using cement, lime and natural fibres could enhance its durability and lowers the risk of cracking. This paper presents an experimental investigation into the performance of stabilised local soil by either, cement mixed with a proportion of granulated blast furnace slag (GBFS) /or straw naturel fibres. Unconfined compressive strength (UCS), shrinkage, wetting and drying, capillary absorption and thermal conductivity tests were performed on both untreated soil samples and stabilised soil samples. The results show that stabilising the soil with cement and GBFS increased both compressive strength, durability, thermal conductivity and decreased the capillary absorption and the shrinkage. The addition of natural wheat fibres increased the capillary absorption but leads to a decrease in the thermal conductivity and to a further reduction in the shrinkage and hence a better insulating less prone to cracking material.


2010 ◽  
Vol 158 ◽  
pp. 1-11 ◽  
Author(s):  
Zi Qiao Jin ◽  
Xian Jun Lu ◽  
Shu Gang Hu

In order to stimulate the potential cementitious property of granulated blast furnace slag (GBFS), the ground GBFS sample (Wei Fang Iron and Steel Corporation, China) was activated by lime and gypsum under different dosages. The results showed that lime is an effective activator for the slag, and the optimum dosage of lime is about 10% (w/w) of the slag. At the optimum dosage of lime, the 28 days compressive strength of the lime-slag paste is higher than that of 32.5 ordinary Portland cement (OPC). But, the early age strength (3 and 7 days compressive strength) of the lime-slag paste is lower than that of the OPC. Addition of gypsum can effectively improve the early age strength of the lime-slag paste. At the ratio of gypsum:lime:slag of 8.2:9.2:82.6 (w/w), both the early and long-term compressive strengths of the gypsum-lime-slag paste are higher than that of the OPC. According to XRD, TG-DTA and SEM detections of the hydration products of the lime-slag paste, the gypsum-lime-slag paste and the OPC paste, it reveals that the hydration process of the GBFS-based cementitious material is different from the ordinary Portland cement and the presence of ettringite (AFt) contributes to the early age strength of the pastes. The major hydration product of the OPC paste (<7 days) were measured as ettringite (AFt), but the AFt phase was not detected in the hydration product of the lime-slag paste and the major hydration product of the lime-slag paste was determined as amorphous CSH gel. However, AFt was detected in the hydration products of the gypsum-lime-slag paste in the early stages of hydration, and the formation of AFt is favorable for the early strength improvement of the material.


2019 ◽  
Vol 8 (4) ◽  
pp. 9226-9230

Due to Modernization and urbanization constructing industries are fast growing also it leading to high demand of constructing materials because of expensive prices, and for the construction industry, usage of steel is currently limited heavily Many studies have been carried out to identify highly available, low cost innovative material to use in construction industry as a solution to meet the ever increasing demand for raw material. Bamboo was used as a construction material as a coarse aggregate, steel reinforcement. Bamboo has a higher compressive strength than wood, brick, or concrete and a tensile strength that rivals steel. water absorption in bamboo was the main problem used for construction .because The durability of the concrete is largely affected by absorption of water. Also poly ethylene bags are widely used in the country and its disposal after use causes more problems ,Mismanaged waste of polyethylene bags is the current threatening to the environment this waste is largely availbe its abundant high resistance to insects, fungi, animals, as well as molds, mildew, rot and many chemicals. In this study cubic bamboo was used as a coarse aggregate and it was coated with the waste LDPE bag melt ,as one of the coating material and other one is neem oil.and it was investigated to find the water absorption and turbidity, antifungal activity and compressive strength some other parameters in bamboo material with coatings it was observed that compared to untreated bamboo the polyethylenene coated bamboo material shows reduction in water absorption level and turbity.


2012 ◽  
Vol 598 ◽  
pp. 336-340
Author(s):  
Hisen Hua Lee ◽  
Yen Shuo Chen ◽  
Chi Wen Cheng

Abstract. Concrete as a most popular construction material has many advantages such as easiness to be formed into various shapes, common availability and relative low cost. However, the low tensile strength and brittleness are disadvantages for wider application of the material. In this study, an advanced material of high strength and strong abrasion resistance HMPE fiber was used to reinforce concrete properties. A series of experimental testing were carried out to examine the properties of both fresh and hardened HMPE fiber reinforced concrete. It was found that the addition of an HMPE fiber material in concrete may enhance its compressive strength as high as 20% increment without water-reducing admixture. If a water-reducing admixture was applied, the increment of compressive strength may reach as high as 25% for 1.5% volume ratio of fiber contained in concrete.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2641
Author(s):  
Sukpyo Kang ◽  
Hyeju Kang ◽  
Byoungky Lee

An increasing amount of red mud (RM) is being generated globally due to the growth in aluminum production. To avoid RM pollution, low-cost methods for effectively recycling RM are being investigated. We propose a method for recycling RM as a construction material. Liquefied RM (LRM) was neutralized by nitric acid and added to cement paste, and the hydration heat, compressive strength, and hydration products were investigated. The cement paste with neutralized LRM had a higher compressive strength than that of plain cement paste and cement paste with LRM without neutralization at 1 day of aging; this indicates that nitric acid neutralization increases the early-age strength. Furthermore, the cement paste with 10% neutralized LRM showed 28 days-compressive strength and hydration heating curves similar to the plain mixture, indicating the positive impact of LRM neutralization on the strength. It was noted that a greater quantity of portlandite was produced earlier in cement paste with neutralized LRM than in that without. Therefore, the proposed method of using RM as a concrete additive has the potential to reduce the cost and environmental impact of both construction materials and RM waste management.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110244
Author(s):  
Olga Szlachetka ◽  
Joanna Witkowska-Dobrev ◽  
Marek Dohojda ◽  
Anna Cała

The paper presents results of investigations of compressive strength and shrinkage of concrete samples made on the basis of the Portland cement CEM I 32.5R, after 2, 7, 14, 28, 90, and 365 days of maturation in four different maturation conditions. It was shown that after 28 days the samples cured according to the standard in the cuvettes with water achieved the highest compressive strength, although the early-age compressive strengths after 7 and 14 days were lower than those for the samples cured in building film and in dry conditions. A determined correlation between the compressive strength and shrinkage of the concrete proves that wet curing also allows a total elimination of the shrinkage in the first 28 days. Along with the growth of the compressive strength, the drying shrinkage reduces. Obtained results confirmed that the best way of concrete curing, among the analyzed methods, from the point of view of both compressive strength and volume changes is the wet curing.


Sign in / Sign up

Export Citation Format

Share Document