Study on Microfine Cement Grouting Material for Silty Fine Sand Stratum

2013 ◽  
Vol 838-841 ◽  
pp. 1457-1462
Author(s):  
Chun Lei Xia ◽  
Ying Ye ◽  
Guan Ming Wang ◽  
Li Cui

Silty fine sand is the second smallest sand with a particle diameter ranging from 0.0625 to 0.120 mm.This kind of sand exists in a large amount in Beijing subway excavation project. Due to the poor self-stabilization of this stratum,seeping , sand flow and collapse take place frequently. Grouting materials such as Portland cement and soluble glass (also called sodium silicate) are employed in most of excavation projects to reinforce this sand stratum. However, the reinforcement is not effective, leading to a large amount of accidents in the process of construction. The reason may be attributed to the fact that Portland cement is unable to penetrate into the stratum and the strength of soluble glass (0.6MPa) is too weak to resist the stratum pressure. To solve this problem, a modified microfine cement grouting material able to penetrate into silty fine sand stratum is developed in this paper. A combination of suspension and diluent is used to increase the penetration extension of the grouts,and the experimental results reveal that the addition of the mixture of suspension and diluent in microfine cement grouting materials improves the penetration property substantially.

2021 ◽  
pp. 1-44
Author(s):  
Yunxiao Liu ◽  
Jiahang Zhang ◽  
Yinyin Chi

In this study, three different diameters of multi-walled carbon nanotubes (MWCNTs) dispersed by polyvinyl pyrrolidone (PVP) were used to reinforce superfine cement grouting materials. The effect of MWCNTs and polyvinyl pyrrolidone (PVP) on the rheological properties of grouting material were accordingly studied. It was found that the yield stress (τ0) and plastic viscosity (η) were slightly decreased when PVP content was low and increased when the PVP content increased. The effect of MWCNT diameter on τ0 was not found to be clear but was more significant on η. The smaller MWCNT diameter was, the more quickly η increase. It was also found that the thixotropic ring area was increased as the MWCNTs content increased. The addition of PVP and MWCNTs caused an increase in the number of entanglement points in different scales, which was the main reason for the viscosity and thixotropy increase. Therefore, the rheological properties of superfine cement grouting material should be adjusted when MWCNTs were added as a reinforcing component. Due to the wrapping of PVP on cement particles which isolates the contacting part between the water and the cement particles, it slows down the cement's hydration rate thus slows down the fluidity loss of the slurry.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6144
Author(s):  
Jiaolong Ren ◽  
Zedong Zhao ◽  
Yinshan Xu ◽  
Siyuan Wang ◽  
Haiwei Chen ◽  
...  

Cement grouting material is one of the most important materials in civil construction at present, for seepage prevention, rapid repair, and reinforcement. To achieve the ever-increasing functional requirements of civil infrastructures, cement grouting materials must have the specific performance of high fluidization, early strength, and low shrinkage. In recent years, nanomaterials have been widely used to improve the engineering performance of cement grouting materials. However, the mechanisms of nanomaterials in grouting materials are not clear. Hence, a high-fluidization, early strength cement grouting material, enhanced by nano-SiO2, is developed via the orthogonal experimental method in this study. The mechanisms of nano-SiO2 on the microstructure and hydration products of the HCGA, in the case of different curing ages and nano-SiO2 contents, are analyzed through scanning electron microscopy tests, X-ray diffraction tests, differential scanning calorimetry tests, and Fourier transform infrared spectroscopy tests.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Guijun Luo ◽  
Chao Xiao ◽  
Yuan Liu ◽  
Kejun Feng ◽  
Qingguo Ren

Great practical significance and engineering application value can be achieved when the large amount of discharged soil produced by EPB shield tunnels is recycled and comprehensively utilized. As one of the key processes of shield construction, synchronous grouting needs a large amount of bentonite, cement, fly ash, sand, and other materials. The research on the reuse of shield muck as synchronous grouting material is carried out based on Zhengzhou subway project. The physical properties and phase of the discharged soil from EPB shield tunnels are studied by using laboratory tests and XRD. The statistics show that the shield muck meets the performance requirements of bentonite and fine sand in synchronous grouting materials. The optimal grout ratio of the reused muck is obtained based on the optimization idea of multiobjective programming by MATLAB. Considering the combined effect of seepage field, stress field, and the timeliness of the grout, the influences of grouting pressure and the filling rate of synchronous grouting on surface settlement, plastic zone of strata, and segment deformation are analyzed by using finite difference method. The results prove that the surface settlement and segment deformation can be better controlled when the grouting pressure is at 0.18 MPa and the grouting rate is at 120%–150%.


2011 ◽  
Vol 250-253 ◽  
pp. 722-727 ◽  
Author(s):  
Chao Yan ◽  
Qing Jun Ding ◽  
Jian Ping Xu ◽  
Hong Xi Wang

At the present, Portland cement-water glass double solution grouting materials have many problems, such as the instability of gelation time and of products, and poor groundwater-corrosion resistance performance, etc. A way to improve the performances of double solution grouting materials was studied by adding metakaolin into the systems. Based on the rapid gelation performance of Portland cement-water glass and the durability of alkali-activated salic cementitious materials, an ideal structural model of the novel anti-aqueous dispersion and anti-aqueous dissolution grouting material (AAGM) was established. Series of experiments were prepared to verify the Na+ solidification and water-corrosion resistance performance of the metakaolin-water glass double solution grouting materials which combined with cement. The results indicated that the compact structure of AAGM was composed of a dominant ingredient of (Na,Ca)-Si-Al-H zeolite gel and a minor part of C-S-H. Moreover, it was shown that the AAGM had hydrated product of low solubility and compact microstructure tested by Fourier transform infrared spectra (FTIR) and transmission electron microscopy (SEM), which proved the well anti-aqueous dispersion and anti-aqueous dissolution performance.


2021 ◽  
Vol 1036 ◽  
pp. 319-326
Author(s):  
Hao Ran Duan ◽  
Peng Zhao ◽  
Lei Qin ◽  
Feng Jiao Shi

The engineering practice shows that the application of grouting technology to treat underground engineering has strong applicability and is one of the most commonly used technical means at present. Based on the underground engineering, this paper introduces the research achievements of grouting materials in recent years, including cement-based grouting materials, mixed grouting materials, anti-scouring grouting materials, and ultra-fine cement grouting materials. Current demand of grouting materials in underground engineering, there exists large dosage of cement, high content, high cost, serious environmental pollution problems, such as looking for alternatives or mixed with other raw materials for preparation of cementation material become the development trend, compared with the cement grouting material, chemical grouting material with higher performance, but in smaller projects within the scope of application. How to reduce the production cost of chemical grouting materials, simplify the production process, overcome the existing toxicity, reduce environmental pollution and improve the durability of solidified body has become the bottleneck of its popularization and application. Some achievements have been made in the modification of cement or chemical materials by nanometer components, but there is still a long way to go before the large-scale application of grouting engineering.


2019 ◽  
Vol 11 (7) ◽  
pp. 1027-1036
Author(s):  
Junfu Lu ◽  
Senlin Ling ◽  
Xun Wang ◽  
Xiaoqiang Li ◽  
Dagang Liu

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 906 ◽  
Author(s):  
Chunjing Zhang ◽  
Bo Shuai ◽  
Xuefeng Zhang ◽  
Xinxin Hu ◽  
Hui Zhang ◽  
...  

Flexibility, stretchability, and flame retardancy are of ever increasing importance in constructing grouting materials. Herein, a simple and effective strategy to make organic-inorganic composite grouting material in a “flexible, stretchable, and flame retardant” way was based on the excellent synergistic interactions among polyurethane prepolymer, red mud, polyethylene glycol, and trimethylolpropane. The resultant polyurethane/red mud composite grouting material with three-dimensional network structure presented a favorable flexibility, desirable compressive strength of 29.2 MPa at 50% compression state, and a good elongation at 15.1%. The grouting material was mainly composed of amorphous polyurethane and crystalline red mud, and its probable formation mechanism was reaction of prepolymer with H2O, polyethylene glycol and trimethylolpropane under vigorous stirring in the presence of catalyst. Furthermore, the grouting material possessed favorable thermal stability, flame retardancy and repairment performance for roadway cracks. This work may open a simple and convenient avenue for the massive engineering application of red mud and preparation of flexible organic-inorganic hybrid grouting material.


2021 ◽  
Vol 11 (23) ◽  
pp. 11286
Author(s):  
Marina Paula Secco ◽  
Débora Thaís Mesavilla ◽  
Márcio Felipe Floss ◽  
Nilo Cesar Consoli ◽  
Tiago Miranda ◽  
...  

The increasingly strong search for alternative materials to Portland cement has resulted in the development of alkali-activated cements (AAC) that are very effective at using industrial by-products as raw materials, which also contributes to the volume reduction in landfilled waste. Several studies targeting the development of AAC—based on wastes containing silicon and calcium—for chemical stabilization of soils have demonstrated their excellent performance in terms of durability and mechanical performance. However, most of these studies are confined to a laboratory characterization, ignoring the influence and viability of the in situ construction process and, also important, of the in situ curing conditions. The present work investigated the field application of an AAC based on carbide lime and glass wastes to stabilize fine sand acting as a superficial foundation. The assessment was supported on the unconfined compressive strength (UCS) and initial shear modulus (G0) of the developed material, and the field results were compared with those prepared in the laboratory, up to 120 days curing. In situ tests were also developed on the field layers (with diameters of 450 and 900 mm and thickness of 300 mm) after different curing times. To establish a reference, the mentioned precursors were either activated with a sodium hydroxide solution or hydrated with water (given the reactivity of the lime). The results showed that the AAC-based mixtures developed greater strength and stiffness at a faster rate than the water-based mixtures. Specimens cured under controlled laboratory conditions showed better results than the samples collected in the field. The inclusion of the stabilized layers clearly increased the load-bearing capacity of the natural soil, while the different diameters produced different failure mechanisms, similar to those found in Portland cement stabilization.


Sign in / Sign up

Export Citation Format

Share Document