Affine connection and parallel transport

Author(s):  
Valeria Ferrari ◽  
Leonardo Gualtieri ◽  
Paolo Pani
Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1391
Author(s):  
Constantin Udriste ◽  
Ionel Tevy

Geometrically, the affine connection is the main ingredient that underlies the covariant derivative, the parallel transport, the auto-parallel curves, the torsion tensor field, and the curvature tensor field on a finite-dimensional differentiable manifold. In this paper, we come up with a new idea of controllability and observability of states by using auto-parallel curves, and the minimum time problem controlled by the affine connection. The main contributions refer to the following: (i) auto-parallel curves controlled by a connection, (ii) reachability and controllability on the tangent bundle of a manifold, (iii) examples of equiaffine connections, (iv) minimum time problem controlled by a connection, (v) connectivity by stochastic perturbations of auto-parallel curves, and (vi) computing the optimal time and the optimal striking time. The connections with bounded pull-backs result in bang–bang optimal controls. Some significative examples on bi-dimensional manifolds clarify the intention of our paper and suggest possible applications. At the end, an example of minimum striking time with simulation results is presented.


Author(s):  
Jean Zinn-Justin

This chapter has two purposes; to describe a few elements of differential geometry that are required in different places in this work, and to provide, for completeness, a short introduction to general relativity (GR) and the problem of its quantization. A few concepts related to reparametrization (more accurately, diffeomorphism) of Riemannian manifolds, like parallel transport, affine connection, or curvature, are recalled. To define fermions on Riemannian manifolds, additional mathematical objects are required, the vielbein and the spin connection. Einstein–Hilbert's action for classical gravity GR is defined and the field equations derived. Some formal aspects of the quantization of GR, following the lines of the quantization of non-Abelian gauge theories, are described. Because GR is not renormalizable in four dimensions (even in its extended forms like supersymmetric gravity), at present time, a reasonable assumption is that GR is the low-energy, large-distance remnant of a more complete theory that probably no longer has the form of a quantum field theory (QFT) (strings, non-commutative geometry?). In the terminology of critical phenomena, GR belongs to the class of irrelevant interactions: due to the presence of the massless graviton, GR can be compared with an interacting theory of Goldstone modes at low temperature, in the ordered phase. The scale of this new physics seems to be of the order of 1019 GeV (Planck's mass). Still, because the equations of GR follow from varying Einstein–Hilbert action, some regularized form is expected to be relevant to quantum gravity. In the framework of GR, the presence of a cosmological constant, generated by the quantum vacuum energy, is expected, but it is extremely difficult to account for its extremely small, measured value.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Gregor Weingart

AbstractThe tangent space of a Lie loop, a non-associative Lie group, carries the structure of a Sabinin algebra, an algebraic concept generalizing Lie algebras. Alternatively a Sabinin algebra can be interpreted as the universal local covariant of a flat affine connection. Combining this interpretation of Sabinin algebras with a version of the parallel transport equation we prove that every Sabinin algebra structure determines and is determined by the one-sided linear terms in the Baker-Campbell-Hausdorff formula for the multiplication in the underlying loop. Based on this resultwe prove that every abstract Sabinin algebra over ℝ is the tangent algebra of a global Lie loop.


2004 ◽  
Vol 11 (04) ◽  
pp. 359-375 ◽  
Author(s):  
R. F. Streater

Let H0 be a selfadjoint operator such that Tr e−βH0 is of trace class for some β < 1, and let χɛ denote the set of ɛ-bounded forms, i.e., ∥(H0+C)−1/2−ɛX(H0+C)−1/2+ɛ∥ < C for some C > 0. Let χ := Span ∪ɛ∈(0,1/2]χɛ. Let [Formula: see text] denote the underlying set of the quantum information manifold of states of the form ρx = e−H0−X−ψx, X ∈ χ. We show that if Tr e−H0 = 1. 1. the map Φ, [Formula: see text] is a quantum Young function defined on χ 2. The Orlicz space defined by Φ is the tangent space of [Formula: see text] at ρ0; its affine structure is defined by the (+1)-connection of Amari 3. The subset of a ‘hood of ρ0, consisting of p-nearby states (those [Formula: see text] obeying C−1ρ1+p ≤ σ ≤ Cρ1 − p for some C > 1) admits a flat affine connection known as the (−1) connection, and the span of this set is part of the cotangent space of [Formula: see text] 4. These dual structures extend to the completions in the Luxemburg norms.


1987 ◽  
Vol 95 ◽  
Author(s):  
J. P. Conde ◽  
S. Aljishi ◽  
D. S. Shen ◽  
V. Chu ◽  
Z E. Smith ◽  
...  

AbstractWe study the dark conductivity σd, dark conductivity activation energy Ea and photoconductivity σph of a-Si:H,F/a-Si,Ge:H,F superlattices both perpendicular and parallel to the plane of the layers. In parallel transport, both the σph and σd are dominated by the alloy layer characteristics with the superposition of carrier confinement quantum effects. In perpendicular transport, the σd shows an interplay of quantum mechanical tunneling through the barriers and of classical thermal emission over the barrier layer and the σph is controlled by the decreasing absorption by the silicon barrier layer as the optical gap Eopt of the structure decreases.We also found that the multilayer structure allows to grow lower gap a-Si,Ge:H,F alloys than achievable under the same deposition conditions for bulk materials. This stabilizing effect allowed us to study low-gap superlattice structures and extract information about these very low gap (<1.2 eV) a- Si,Ge:H,F alloys.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650027 ◽  
Author(s):  
Giovanni Amelino-Camelia ◽  
Giulia Gubitosi ◽  
Giovanni Palmisano

Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called [Formula: see text]-momentum space, with de Sitter (dS) metric and [Formula: see text]-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi–Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.


2004 ◽  
Vol 19 (36) ◽  
pp. 2683-2695 ◽  
Author(s):  
A. M. DE M. CARVALHO ◽  
CLAUDIO FURTADO ◽  
FERNANDO MORAES

In this paper we discuss parallel transport of vectors and spinors around circular orbits in Schwarzschild–AdS spacetime. We study the global properties of this spacetime via loop variables or holonomy. A set of paths in this background is considered. We demonstrate that for some special radii there appears the so-called quantized band structure of holonomy invariance. This analysis is also extended to parallel transport of a spinor in this spacetime.


2010 ◽  
Vol 25 (07) ◽  
pp. 511-523
Author(s):  
JUN LIANG ◽  
YI-SHI DUAN

We study localization of various matter fields on a non-Z2-symmetric scalar thick brane in a pure geometric Weyl integrable manifold in which variations in the length of vectors during parallel transport are allowed and a geometric scalar field is involved in its formulation. It is shown that, for spin 0 scalar field, the massless zero mode can be normalized on the brane. Spin 1 vector field cannot be normalized on the brane. And there is no spinor field which can be trapped on the brane for the case of no Yukawa-type coupling. By introducing the appropriate Yukawa coupling, the left or right chiral fermionic zero mode can be localized on the brane.


2007 ◽  
Vol 22 (29) ◽  
pp. 5237-5244 ◽  
Author(s):  
H. T. NIEH

Curvature and torsion are the two tensors characterizing a general Riemannian space–time. In Einstein's general theory of gravitation, with torsion postulated to vanish and the affine connection identified to the Christoffel symbol, only the curvature tensor plays the central role. For such a purely metric geometry, two well-known topological invariants, namely the Euler class and the Pontryagin class, are useful in characterizing the topological properties of the space–time. From a gauge theory point of view, and especially in the presence of spin, torsion naturally comes into play, and the underlying space–time is no longer purely metric. We describe a torsional topological invariant, discovered in 1982, that has now found increasing usefulness in recent developments.


Sign in / Sign up

Export Citation Format

Share Document