The Biodiversity Crisis

2021 ◽  
pp. 215-234
Author(s):  
Norman Johnson
Keyword(s):  
Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 291
Author(s):  
Eustachio Tarasco ◽  
Francesca De Luca

Agro-forestry intensification is one of the main drivers of the global biodiversity crisis and decline in arthropods and particularly insects [...]


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Christine L Madliger ◽  
Oliver P Love ◽  
Vivian M Nguyen ◽  
Neal R Haddaway ◽  
Steven J Cooke

Abstract Conservation physiology represents a recently emerging arm of conservation science that applies physiological tools and techniques to understand and solve conservation issues. While a multi-disciplinary toolbox can only help to address the global biodiversity crisis, any field can face challenges while becoming established, particularly highly applied disciplines that require multi-stakeholder involvement. Gaining first-hand knowledge of the challenges that conservation physiologists are facing can help characterize the current state of the field and build a better foundation for determining how it can grow. Through an online survey of 468 scientists working at the intersection of physiology and conservation, we aimed to identify characteristics of those engaging in conservation physiology research (e.g. demographics, primary taxa of study), gauge conservation physiology’s role in contributing to on-the-ground conservation action, identify the perceived barriers to achieving success and determine how difficult any identified barriers are to overcome. Despite all participants having experience combining physiology and conservation, only one-third considered themselves to be ‘conservation physiologists’. Moreover, there was a general perception that conservation physiology does not yet regularly lead to tangible conservation success. Respondents identified the recent conceptualization of the field and the broader issue of adequately translating science into management action as the primary reasons for these deficits. Other significant barriers that respondents have faced when integrating physiology and conservation science included a lack of funding, logistical constraints (e.g. sample sizes, obtaining permits) and a lack of physiological baseline data (i.e. reference ranges of a physiological metric’s ‘normal’ or pre-environmental change levels). We identified 12 actions based on suggestions of survey participants that we anticipate will help deconstruct the barriers and continue to develop a narrative of physiology that is relevant to conservation science, policy and practice.


2020 ◽  
Vol 66 (3-4) ◽  
pp. 151-179
Author(s):  
L. Lee Grismer ◽  
L. Wood Perry ◽  
Marta S. Grismer ◽  
Evan S.H. Quah ◽  
Myint Kyaw Thura ◽  
...  

The historical accuracy of building taxonomies is improved when they are based on phylogenetic inference (i.e., the resultant classifications are less apt to misrepresent evolutionary history). In fact, taxonomies inferred from statistically significant diagnostic morphological characters in the absence of phylogenetic considerations, can contain non-monophyletic lineages. This is especially true at the species level where small amounts of gene flow may not preclude the evolution of localized adaptions in different geographic areas while underpinning the paraphyletic nature of each population with respect to the other. We illustrate this point by examining genetic and morphological variation among three putatively allopatric populations of the granite-dwelling Bent-toed Gecko Cyrtodactylus aequalis from hilly regions in southeastern Myanmar. In the absence of molecular phylogenetic inference, a compelling argument for three morphologically diagnosable species could be marshaled. However, when basing the morphological analyses of geographic variation on a molecular phylogeny, there is a more compelling argument that only one species should be recognized. We are cognizant of the fact however, that when dealing with rare species or specimens for which no molecular data are possible, judicious morphological analyses are the only option—and the desired option given the current worldwide biodiversity crisis.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110261
Author(s):  
Wannapimol Kriangwanich ◽  
Korakot Nganvongpanit ◽  
Kittisak Buddhachat ◽  
Puntita Siengdee ◽  
Siriwadee Chomdej ◽  
...  

Wildlife trading and the illegal hunting of wildlife are contributing factors to the biodiversity crisis that is presently unfolding across the world. The inability to control the trade of animal body parts or available biological materials is a major challenge for those who investigate wildlife crime. The effective management of this illegal trade is an important facet of wildlife forensic sciences and can be a key factor in the enforcement of effective legislation surrounding the illegal trade of protected and endangered species. However, the science of wildlife forensics is limited by the absence of a comprehensive database for wildlife investigations. Inter-simple sequence repeat markers (ISSR) coupled with high resolution melting analysis (HRM) have been effectively used for species identification of 38 mammalian species. Six primers of the ISSR markers were chosen for species identification analysis. From six ISSR primers resulting in a range of accuracy of 33.3%–100% and 100% in terms of precision in every primer. Furthermore, 161 mammalian samples were 100% distinguished to the correct species using these six ISSR primers. ISSR-HRM analysis was successfully employed in determining mammal identification among varying mammalian species, and thus could serve as an effective alternative tool or technique in the species identification process. This option would offer researchers a heightened level of convenience in terms of its performance and the ease with which researchers or field practice veterinarians would be able to interpret results in effectively identifying animal parts at wildlife investigation crime scenes.


Significance No substantive agreements emerged. Global targets to limit biodiversity loss were agreed in 2010, but all were missed and biodiversity loss has accelerated. The 'Kunming Declaration' does indicate some political will, but any enforceable delivery plans will have to wait for the second part of COP15 next year. Impacts The global biodiversity crisis is arguably as serious and pressing as the climate crisis. The low profile of COP15 shows that the severity of the problem is not yet widely recognised. The goal of making 30% of earth's land and seas 'protected' by 2030 provides new focus; disputes will focus on what it actually means. As host, Beijing will want to demonstrate success and will put pressure on other governments. Biodiversity is difficult even to measure, making is extremely challenging to create clear structures for accountable implementation.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 397-413 ◽  
Author(s):  
Margaret L. Fraiser ◽  
David J. Bottjer

AbstractThe end-Permian mass extinction is commonly portrayed not only as a massive biodiversity crisis but also as the time when marine benthic faunas changed from the Paleozoic Fauna, dominated by rhynchonelliform brachiopod taxa, to the Modern Fauna, dominated by gastropod and bivalve taxa. After the end-Permian mass extinction, scenarios involving the Mesozoic Marine Revolution portray a steady increase in numerical dominance by these benthic molluscs as largely due to the evolutionary effects of an “arms race.” We report here a new global paleoecological database from study of shell beds that shows a dramatic geologically sudden earliest Triassic takeover by bivalves as numerical dominants in level-bottom benthic marine communities, which continued through the Early Triassic. Three bivalve genera were responsible for this switch, none of which has any particular morphological features to distinguish it from many typical Paleozoic bivalve genera. The numerical success of these Early Triassic bivalves cannot be attributed to any of the well-known morphological evolutionary innovations of post-Paleozoic bivalves that characterize the Mesozoic Marine Revolution. Rather, their ability to mount this takeover most likely was due to the large extinction of rhynchonelliform brachiopods during the end-Permian mass extinction and aided by their environmental distribution and physiological characteristics that enabled them to thrive during periods of oceanic and atmospheric stress during the Permian/Triassic transition.


2016 ◽  
Vol 283 (1833) ◽  
pp. 20160811 ◽  
Author(s):  
Dino P. McMahon ◽  
Myrsini E. Natsopoulou ◽  
Vincent Doublet ◽  
Matthias Fürst ◽  
Silvio Weging ◽  
...  

Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo . The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.


1970 ◽  
Vol 4 ◽  
pp. 115-119 ◽  
Author(s):  
Rajan P Paudel

Invasive species adversely affects the ecology and habitat of the species existing in a particular region. They are one of the top threats to the biodiversity of life on Earth. Mikania micrantha is spreading like a wildfire in Nepal whose effect on Rhino habitat is being studied in Chitwan National Park. Various mechanical, chemical and biological methods of control for Mikania are available. It's likely to be more cost effective to prevent the spread of invasive species in the first place than to tackle the biodiversity crisis once they have become established.DOI: http://dx.doi.org/10.3126/init.v4i0.5544The Initiation Vol.4 2011 115-119


Sign in / Sign up

Export Citation Format

Share Document