Substantiation of parameters of the pillarless mining technology of coal seams prone to spontaneous combustion

Author(s):  
D.D. Golubev ◽  
A.A. Sidorenko
2020 ◽  
Vol 201 ◽  
pp. 01014
Author(s):  
Mykola Antoshchenko ◽  
Elvira Filatieva ◽  
Vladyslav Yefimtsev ◽  
Vadym Tarasov

Currently, there is no reliable regulatory framework for determining the hazardous properties of coal seams, including the propensity of coal for spontaneous combustion. Under relatively identical mining engineering and geological conditions for mining coal seams, the probability of emergency situations is determined to a large extent by the genetic properties of coal. The research methodology is based on the classical definition of metamorphism, which characterizes the change in the composition and properties of coal. The analysis involves indicators that directly or indirectly characterize the elemental composition of organic and mineral mass, chemical activity and physico-mechanical properties. This will allow to establish a specific composition and properties that contribute to the manifestation of certain hazardous properties of coal seams during mining operations. It is shown that the modern industrial classification does not take into account the change in the organic and mineral constituents of coal, which does not make it possible to use it unchanged to predict the hazardous properties of coal seams.


2009 ◽  
Vol 1 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Shi-hao Tu ◽  
Yuan Yong ◽  
Yang Zhen ◽  
Xiao-tao Ma ◽  
Wu Qi

Author(s):  
Niroj Kumar Mohalik ◽  
Somu Mandal ◽  
Santosh Kumar Ray ◽  
Asfar Mobin Khan ◽  
Debashish Mishra ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-28
Author(s):  
Meng Wang ◽  
Caiwang Tai ◽  
Qiaofeng Zhang ◽  
Zongwei Yang ◽  
Jiazheng Li ◽  
...  

Longwall top coal caving mining is one of the main methods of mining thick coal seams in China. Therefore, carrying out the classification evaluation of top coal caving is of great significance to ensure mining success and reduce the risk of mining technology. In order to realize the classification evaluation of top coal caving, this article introduces the method of using BigML to establish the classification evaluation model of top coal caving. Furthermore, using the data from the CNKI database as sample data, a classification evaluation model of top coal caving is established on BigML. After training, testing, and optimization, the model is used to evaluate the top coal caving in No. 3 coal seam of Gucheng Coal Mine, and the evaluation result is grade 1, which is consistent with the engineering practice. The final research results show that the application of BigML in the classification evaluation of top coal caving is successful; the evaluation of top coal caving through BigML is reliable; BigML provides another scientific reliability way for the classification evaluation of top coal caving.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bin Lu ◽  
Yongliang Li ◽  
Shizheng Fang ◽  
Hai Lin ◽  
Ye Zhu

To improve the efficiency and reduce costs of cemented-fill mining, we propose a continuous mining and continuous backfilling (CMCB) method based on the coal resources at the Yuxing mine in Inner Mongolia, China, and constructed a complete filling material transportation system. The new technology is suitable for cemented-fill mining of gently inclined coal seams. Numerical simulations were performed to investigate the dynamic migration law of surrounding rock stress using CMCB cemented-fill mining technology, and similar simulations were conducted to analyze the movement characteristics of the coal overburden. The results show that the coal pillars and filling body alternately bear and support each other during the CMCB process, which resolves the contradiction between mining and filling, achieves parallel mining and filling operations, and improves mining efficiency. The new mining mode exerts minimal disturbance to the overlying rock and effectively controls surface deformation. The engineering application of this technique is promising and provides theoretical guidance and technical support for safe and efficient mining of the same type of coal resources.


2021 ◽  
Vol 250 ◽  
pp. 534-541
Author(s):  
Vladimir Zubov ◽  
Dmitrii Golubev

Spontaneous combustion of coal remains an important problem for coal mines, which can lead to an explosion of methane and coal dust. Accidents associated with spontaneous combustion of coal can cause significant economic losses to coal mining companies, as well as entail social damage – injuries and loss of life. Accidents are known at the Kuzbass mines, which occurred as a result of negligent attitude to the danger of spontaneous combustion of coal, the victims of which were dozens of people. The analysis of emergency situations associated with spontaneous combustion of coal shows that the existing wide range of means of preventing endogenous fires does not provide complete safety when working out coal seams prone to spontaneous combustion, therefore, spontaneous combustion places continue to occur in mines. The consequences that may arise as a result of a methane explosion initiated by a self-ignition place indicate the need to improve the used technologies. The purpose of the work is to determine the impact of modern technological solutions used in functioning mines during underground mining of flat-lying coal seams prone to spontaneous combustion, and to develop new solutions that reduce endogenous fire hazard. Conclusions on the influence of leaving coal pillars in the developed space, isolated air removal from the stoping face through the developed space, the length of the stoping face and the excavation pillar, and other factors on the danger of the formation of spontaneous combustion places are presented. Conclusions about the possibility of using modern technological solutions in future are also drawn.


2018 ◽  
Vol 10 (7) ◽  
pp. 2468 ◽  
Author(s):  
Karolina Wojtacha-Rychter ◽  
Adam Smoliński

Based on the concentration of gases such as propylene and ethylene in the atmosphere of a mine, it is possible to assess the development of a mine fire. With the increase of coal temperature, an increased emission of these gases has been observed. However, the experiment results presented in this paper prove that the use of propylene and ethylene for the prediction of the spontaneous combustion of coal have some limitations. It was found that during a flow of gas mixture through the sorption column, propylene and ethylene were sorbed on coal. This phenomenon manifests in smaller amounts of gases at the outlet of the sorption column. By comparing the concentration of ethylene to propylene at the inlet of the column, it was concluded that the ratio was usually below 3, whereas the range of the ratio at the end of the column was between 0.6–353. The value of gases ratio changed depending on the type of coal material in the column. The results of this experiment provide useful information that the quantitative relation between ethylene and propylene concentrations may indicate the occurrence of the sorption process on carbon materials in coal seams.


Sign in / Sign up

Export Citation Format

Share Document