spontaneous combustion of coal
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 85)

H-INDEX

22
(FIVE YEARS 9)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122240
Author(s):  
Zhian Huang ◽  
Sainan Quan ◽  
Xiangming Hu ◽  
Yinghua Zhang ◽  
Yukun Gao ◽  
...  

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122160
Author(s):  
Di Xue ◽  
Xiangming Hu ◽  
Hao Dong ◽  
Weimin Cheng ◽  
Wei Wang ◽  
...  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 557
Author(s):  
Xiaoqiang Zhang ◽  
Yuanyuan Pan

In order to solve the problem of the spontaneous combustion of coal gangue, a coal gangue fire-extinguishing material of gel–foam was developed. The foaming agent was screened by the Waring blender method with varying foam amounts, and the superabsorbent foam stabilizer was synthesized by free radical polymerization. Moreover, the gel–foam was used in a spontaneous combustion of coal gangue mountain field practice. The results showed that when the mass fraction of sodium dodecyl sulfonate and coconut oil amide propyl betaine was 0.6% and 4:6, the foaming amount was as high as 1500 mL. When the mass ratio of chitosan to acrylic acid was 1:6, the neutralization degree was 80%, the cross-linking agent was 0.8%, and the initiator was 0.01%, the water absorption of the synthesized superabsorbent foam stabilizer reached 476 mL/g. The synthesized gel–foam was tested in a spontaneous combustion coal gangue hill in a certain area, and no reburning sign was found within one month.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Dariusz OBRACAJ ◽  
Marek KORZEC ◽  
Tien Tung VU

The liability of coal to spontaneous combustion is the principal cause of mine fires. Spontaneouscombustion is one of the main threats in Polish and Vietnamese coal mines. The article presents an analysisof the spontaneous combustion of coal in mines of both countries. It is related to the natural prone of coalto spontaneous heating and consequently to its self-ignition. Despite the relevant recognition of themethods of preventing this threat, in mines, spontaneous combustion occurs during the exploitation ofcoal seams with low and very high self-ignition tendency. Apart from the technical factors related to thedesign of coal seam mining, the properties of coal have a significant impact on the occurrence ofspontaneous combustion. Their correct recognition is essential to the precautions against spontaneouscombustion for minimalizing the risk of a mine fire. Therefore, it is necessary to study the factorsinfluencing the propensity of coal to spontaneous heating. A review of the methods used to determine thepropensity of coal to spontaneous combustion is presented in the article. Based on the high-temperaturemethod of determining the propensity of coals to spontaneous combustion, the influence of selectedfactors related to samples' preparation for testing on the determination result was investigated. Theinfluence of the fractional decomposition and the moisture content in the prepared samples on thedetermination result was demonstrated. The presented research results may improve research proceduresfor determining the propensity of coal to spontaneous combustion.


Fuel ◽  
2021 ◽  
pp. 122779
Author(s):  
Chao Han ◽  
Shibin Nie ◽  
Zegong Liu ◽  
Song Liu ◽  
Hong Zhang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Naifu Cao ◽  
Gang Wang ◽  
Yuntao Liang

In this article, a series of experiments have been carried out to study the spontaneous combustion and oxidation mechanism of coal after water immersion and investigate its tendency to spontaneous combustion, analyze the difficulty of spontaneous combustion of coal samples under different water immersion conditions, and establish a kinetic model of water immersion coal oxidation (taking the Bulianta 12# coal as a case study). They rely on physical oxidation adsorption, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry, and oil bath heating. SEM has been used to analyze the characteristics of coal pore structure under different water immersion conditions (water-saturated coal samples under different water loss conditions until the coal samples are completely dried); FTIR served to investigate the characteristics of the molecular chemical structure of the coal surface before and after the coal is immersed in water. Through programmed temperature oxidation experiments combined with FTIR analyses and gas chromatographic (GC) analysis of gaseous products, it has been possible to study the changes of molecular structure and gas products on the surface of coal samples at different temperatures and water immersion conditions. The oxidation reaction rate of the 12# coal samples of Shendong Mine’s Bulianta Mine under different water content conditions during the spontaneous combustion process has been quantitatively studied. The difficulty of spontaneous combustion of coal samples has been correspondingly addressed. A kinetic model from the perspective of oxygen consumption has been proposed. Thermogravimetry-differential scanning calorimetry (TG-DSC) has been used to analyze and study the exothermal oxidation process before and after coal immersion. From the perspective of the exothermic intensity of the coal-oxygen reaction, an oxidation kinetic model for immersed coal samples has been developed to qualitatively determine its spontaneous combustion tendency. Results have shown that the increase in the specific surface area increases the risk of spontaneous combustion, and coal samples after soaking and drying have a stronger tendency to spontaneous combustion than raw coal. The moisture content of the coal sample leading to the easiest ignition conditions is 16.05%. Regardless of the moisture content, the critical temperature is maintained at 65–75°C, and the temperature of the left coal in the goaf should be prevented from exceeding this critical value.


2021 ◽  
pp. 014459872110490
Author(s):  
Fei Gao ◽  
Zhe Jia ◽  
Mei-ling Qin ◽  
Xiao-gang Mu ◽  
Yi-fei Teng ◽  
...  

Research on the spontaneous combustion of coal caused by sulfur has always been focused on pyrite in coal but has rarely considered the influence of organic sulfur. In this paper, coal samples, rather than model compounds, were used to study the influence of organic sulfur content in coal on its spontaneous combustion process. The results of X-ray photoelectron spectroscopy and thermogravimetry, differential scanning calorimetry, and mass spectrometry indicate that organic sulfur in Shuiyu clean coal exists in forms of mercaptan, thioether, sulfone (sulfoxide), and thiophene. With the decrease of organic sulfur content, the characteristic temperature points and the peak values of the exothermic curves in the process of coal oxidation spontaneous combustion all shifted toward higher temperatures. The ignition activation energy of coal also increased, and the initial and peak gas evolution temperatures of the oxidation products shifted toward higher temperatures. These findings suggest that the reduction of organic sulfur content can inhibit the oxidation process and spontaneous combustion tendency of coal. This effectively reveals the mechanism of the spontaneous combustion of coal and is of great significance to future studies in this field.


2021 ◽  
Vol 250 ◽  
pp. 534-541
Author(s):  
Vladimir Zubov ◽  
Dmitrii Golubev

Spontaneous combustion of coal remains an important problem for coal mines, which can lead to an explosion of methane and coal dust. Accidents associated with spontaneous combustion of coal can cause significant economic losses to coal mining companies, as well as entail social damage – injuries and loss of life. Accidents are known at the Kuzbass mines, which occurred as a result of negligent attitude to the danger of spontaneous combustion of coal, the victims of which were dozens of people. The analysis of emergency situations associated with spontaneous combustion of coal shows that the existing wide range of means of preventing endogenous fires does not provide complete safety when working out coal seams prone to spontaneous combustion, therefore, spontaneous combustion places continue to occur in mines. The consequences that may arise as a result of a methane explosion initiated by a self-ignition place indicate the need to improve the used technologies. The purpose of the work is to determine the impact of modern technological solutions used in functioning mines during underground mining of flat-lying coal seams prone to spontaneous combustion, and to develop new solutions that reduce endogenous fire hazard. Conclusions on the influence of leaving coal pillars in the developed space, isolated air removal from the stoping face through the developed space, the length of the stoping face and the excavation pillar, and other factors on the danger of the formation of spontaneous combustion places are presented. Conclusions about the possibility of using modern technological solutions in future are also drawn.


2021 ◽  
Vol 250 ◽  
pp. 526-533
Author(s):  
Andrian Batugin ◽  
Aleksandr Kobylkin ◽  
Valerija Musina

The paper investigates the hypothesis according to which one of the factors influencing the spontaneous combustion of coal-bearing dumps is its geodynamic position, i.e. its location in the geodynamically dangerous zone (GDZ) at the boundary of the Earth crust blocks. This hypothesis is put forward on the basis of scientific ideas about the block structure of the Earth crust and the available statistical data on the location of burning dumps and is studied using computer modeling. A dump located in the area of Eastern Donbass was chosen as the object of research. The simulation results show that the penetration of air into the dump body from the mine through the GDZ, which crosses the mining zone, is possible at an excess pressure of 1000 Pa created by the main ventilation fans. The fire source appearance in the dump body causes an increase in the temperature of the dump mass and becomes a kind of trigger that "turns on" the aerodynamic connection between the dump and the environment, carried out through the GDZ. It is concluded that the establishment of an aerodynamic connection between the mine workings and the dump through the GDZ can be an important factor contributing to the endogenous fire hazard of coal-bearing dumps. The simulation results can be used in the development of projects for monitoring coal-bearing dumps and measures to combat their spontaneous combustion.


Sign in / Sign up

Export Citation Format

Share Document