Inhibition of Carotenoid Biosynthesis by Herbicides

2020 ◽  
pp. 25-44
Author(s):  
Gerhard Sandmann ◽  
Peter Böger
Planta ◽  
2021 ◽  
Vol 253 (1) ◽  
Author(s):  
Ledong Jia ◽  
Junsheng Wang ◽  
Rui Wang ◽  
Mouzheng Duan ◽  
Cailin Qiao ◽  
...  

Abstract Main conclusion The molecular mechanism underlying white petal color in Brassica napus was revealed by transcriptomic and metabolomic analyses. Abstract Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.


1989 ◽  
Vol 264 (22) ◽  
pp. 13109-13113
Author(s):  
G E Bartley ◽  
P A Scolnik

2020 ◽  
Vol 9 (1) ◽  
pp. 71
Author(s):  
Julia Marente ◽  
Javier Avalos ◽  
M. Carmen Limón

Carotenoid biosynthesis is a frequent trait in fungi. In the ascomycete Fusarium fujikuroi, the synthesis of the carboxylic xanthophyll neurosporaxanthin (NX) is stimulated by light. However, the mutants of the carS gene, encoding a protein of the RING finger family, accumulate large NX amounts regardless of illumination, indicating the role of CarS as a negative regulator. To confirm CarS function, we used the Tet-on system to control carS expression in this fungus. The system was first set up with a reporter mluc gene, which showed a positive correlation between the inducer doxycycline and luminescence. Once the system was improved, the carS gene was expressed using Tet-on in the wild strain and in a carS mutant. In both cases, increased carS transcription provoked a downregulation of the structural genes of the pathway and albino phenotypes even under light. Similarly, when the carS gene was constitutively overexpressed under the control of a gpdA promoter, total downregulation of the NX pathway was observed. The results confirmed the role of CarS as a repressor of carotenogenesis in F. fujikuroi and revealed that its expression must be regulated in the wild strain to allow appropriate NX biosynthesis in response to illumination.


2010 ◽  
Vol 106 (1-2) ◽  
pp. 89-102 ◽  
Author(s):  
Martine Bertrand

2006 ◽  
Vol 78 (8) ◽  
pp. iv
Author(s):  
Richard J. Cogdell

The 14th International Symposium on Carotenoids was held in Edinburgh, Scotland, UK 17-22 July 2005, under the chairmanship of Dr. George Britton. The International Symposium on Carotenoids is the official symposium for the International Carotenoid Society (http://carotenoidsociety.org), which supported the symposium as did IUPAC. Financial support was gratefully received from DSM Nutritional Products, BASF Ag, Cognis Deutschland, Fuji Chemical Company Ltd., Inexa Industria Extractora CA, Valensa International, Nu Skin International Inc., Cargill Inc., The Alcon Foundation Inc., Kemin Health, Access Business Group, and LycoRed Natural Products Industries Ltd.The first International Symposium took place in Trondheim, Norway in 1966, and such meetings have continued at three-year intervals since then. Over that period of almost 40 years, the carotenoids field has expanded tremendously and diversified into many fields of study, especially human nutrition and health. There have also been continued advances in our understanding of the roles of carotenoids in photosynthesis and photochemistry, the regulation of their formation, de novo chemical synthesis, and the analytical techniques available for detailed structural analyses. The commercial importance of carotenoids has also significantly increased over the years; the current market was estimated to be around $887 million for 2004 and is expected to rise at an average annual growth rate of 2.9 % to just over $1 billion.These areas were fully reflected in the 220 invited lectures, oral communications, and poster sessions. The seven articles that appear in this issue embody the themes of the symposium, namely:- Carotenoids and Health: a series of themed sessions focusing on protection against disease, the eye, molecular and cellular processes, and nutrition- Carotenoid Oxidation and Breakdown Products and Metabolites- Carotenoids in Photosynthesis- Carotenoid Biosynthesis- Commercial Production and Applications- Carotenoids and Nature: ecology, etc.- Molecular Interactions of CarotenoidsFinally, we would like to thank everyone who contributed to a most successful symposium, including the local organizing committee, and look forward to the next meeting in 2008, which will be held in Okinawa, Japan and will be chaired by Prof. Hideki Hashimoto.Richard J. CogdellPeter M. BramleyConference Editors


2003 ◽  
Vol 69 (12) ◽  
pp. 7563-7566 ◽  
Author(s):  
Stephen J. Van Dien ◽  
Christopher J. Marx ◽  
Brooke N. O'Brien ◽  
Mary E. Lidstrom

ABSTRACT Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.


2019 ◽  
Vol 9 (5) ◽  
pp. 251-257
Author(s):  
Rashidi Othman ◽  
Norazian Mohd. Hassan   ◽  
Ainaa Eliah Abu Bakar ◽  
Nur Hidayah Noh   ◽  
Nurrulhidayah Ahmad Fadzillah   ◽  
...  

All carotenoids originate from a single, common precursor, phytoene. The colour of carotenoids is determinedby desaturation, isomerization, cyclization, hydroxylation and epoxidation of the 40-carbon phytoene. The conjugated double-bond structure and nature of end ring groups confer on the carotenoids properties such as colour and antioxidant activity. Algae may become major sources of carotenoids but the extent of environmental stress and genetic influences on algae carotenoid biosynthesis are poorly understood. Carotenoid biosynthesis can be influenced by many aspects and is liable to geometric isomerization with the existence of oxygen, light and heat which affect the colour degradation and oxidation. Therefore, in this study carotenoid biogenesis is investigated in cell culture of Chlorella fusca as a potential model system for rapid initiation, and extraction of carotenoids by providing stringent control of genetic, developmental and environmental factors. The value of this experimental system for investigating key factors controlling the carotenoid accumulation is then tested by assessing the effects of environmental variables, such as drought stress, light intensity, nutrient strength and media formulation on carotenoid accumulation. Our findings revealed that the conversion of violaxanthin to lutein is due to irradiance stress condition, nutrient strength as well as drought stress. As a result, manipulation of environmental variables will up-regulate lutein concentration. This reaction will restrict the supply of precursors for ABA biosynthesis and the algae cell culture responds by increasing carotenogenic metabolic flux to compensate for this restriction. In conclusion, selecting the appropriate algae species for the appropriate environmental conditions is not only important for yield production, but also for nutritional value quality of carotenoid.


Sign in / Sign up

Export Citation Format

Share Document