Manipulation of Environmental Stress Towards Lutein Production in Chlorella fusca Cell Culture

2019 ◽  
Vol 9 (5) ◽  
pp. 251-257
Author(s):  
Rashidi Othman ◽  
Norazian Mohd. Hassan   ◽  
Ainaa Eliah Abu Bakar ◽  
Nur Hidayah Noh   ◽  
Nurrulhidayah Ahmad Fadzillah   ◽  
...  

All carotenoids originate from a single, common precursor, phytoene. The colour of carotenoids is determinedby desaturation, isomerization, cyclization, hydroxylation and epoxidation of the 40-carbon phytoene. The conjugated double-bond structure and nature of end ring groups confer on the carotenoids properties such as colour and antioxidant activity. Algae may become major sources of carotenoids but the extent of environmental stress and genetic influences on algae carotenoid biosynthesis are poorly understood. Carotenoid biosynthesis can be influenced by many aspects and is liable to geometric isomerization with the existence of oxygen, light and heat which affect the colour degradation and oxidation. Therefore, in this study carotenoid biogenesis is investigated in cell culture of Chlorella fusca as a potential model system for rapid initiation, and extraction of carotenoids by providing stringent control of genetic, developmental and environmental factors. The value of this experimental system for investigating key factors controlling the carotenoid accumulation is then tested by assessing the effects of environmental variables, such as drought stress, light intensity, nutrient strength and media formulation on carotenoid accumulation. Our findings revealed that the conversion of violaxanthin to lutein is due to irradiance stress condition, nutrient strength as well as drought stress. As a result, manipulation of environmental variables will up-regulate lutein concentration. This reaction will restrict the supply of precursors for ABA biosynthesis and the algae cell culture responds by increasing carotenogenic metabolic flux to compensate for this restriction. In conclusion, selecting the appropriate algae species for the appropriate environmental conditions is not only important for yield production, but also for nutritional value quality of carotenoid.

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 448 ◽  
Author(s):  
Pengjun Lu ◽  
Ruqian Wang ◽  
Changqing Zhu ◽  
Xiumin Fu ◽  
Shasha Wang ◽  
...  

Plastids are sites for carotenoid biosynthesis and accumulation, but detailed information on fruit plastid development and its relation to carotenoid accumulation remains largely unclear. Here, using Baisha (BS; white-fleshed) and Luoyangqing (LYQ; red-fleshed) loquat (Eriobotrya japonica), a detailed microscopic analysis of plastid development during fruit ripening was carried out. In peel cells, chloroplasts turned into smaller chromoplasts in both cultivars, and the quantity of plastids in LYQ increased by one-half during fruit ripening. The average number of chromoplasts per peel cell in fully ripe fruit was similar between the two cultivars, but LYQ peel cell plastids were 20% larger and had a higher colour density, associated with the presence of larger plastoglobules. In flesh cells, chromoplasts could be observed only in LYQ during the middle and late stages of ripening, and the quantity on a per-cell basis was higher than that in peel cells, but the size of chromoplasts was smaller. It was concluded that chromoplasts are derived from the direct conversion of chloroplasts to chromoplasts in the peel, and from de novo differentiation of proplastids into chromoplasts in flesh. The relationship between plastid development and carotenoid accumulation is discussed.


2020 ◽  
Author(s):  
Guori Gao ◽  
Zhongrui Lv ◽  
Guoyun Zhang ◽  
Jiayi Li ◽  
Jianguo Zhang ◽  
...  

Abstract Drought is the most severe abiotic stress and hinders the normal growth and development of plants. Sea buckthorn (Hippophae rhamnoides Linn.) is a typical drought-resistant tree species. In this study, the leaves of the H. rhamnoides ssp. sinensis (“FN”) and H. rhamnoides ssp. mongolica (“XY”) were selected during drought-recovery cycles for RNA sequencing, and physiological and biochemical analyses. The results revealed that drought stress significantly decreased leaf water potential, net photosynthetic rate, and stomatal conductance in both sea buckthorn subspecies. Similarly, the contents of flavone, flavonol, isoflavone and flavanone significantly decreased under drought stress in “XY.” Conversely, in “FN,” the flavone and abscisic acid (ABA) contents were significantly higher under drought stress and recovered after rehydration. Meanwhile, 4,618 and 6,100 differentially expressed genes (DEGs) were identified under drought stress in “FN” and “XY,” respectively. In total, 5,164 DEGs were observed in the comparison between “FN” and “XY” under drought stress. This was more than the 3,821 and 3,387 DEGs found when comparing the subspecies under control and rehydration conditions, respectively. These DEGs were mainly associated with carotenoid biosynthesis, flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction. Six hub DEGs (ABCG5, ABCG22, ABCG32, ABCG36, ABF2 and PYL4) were identified to respond to drought stress based on WGCNA and BLAST analysis using DroughtDB. These six DEGs were annotated to play roles in the ABA-dependent signaling pathway. Sixteen RNA sequencing results involving eight genes and similar expression patterns (12/16) were validated using quantitative real-time PCR. The biochemical and molecular mechanisms underlying the regulation of drought responses by ABA and flavonoids in sea buckthorn were clarified. In this study, gene co-expression networks were constructed, and the results suggested that the mutual regulation of ABA and flavonoid signaling contributed to the difference in drought resistance between the different sea buckthorn subspecies.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 846E-847 ◽  
Author(s):  
Andrew Schofield* ◽  
Gopinadhan Paliyath

The accumulation of carotenoids such as lycopene and beta-carotene greatly influences the quality of ripe tomato (Lycopersicon esculentum) fruit because cellular levels of these compounds determine the intensity of red color. As well, lycopene has anti-cancer properties and beta-carotene is a Vitamin A precursor. Recent work has demonstrated phytochrome regulation of the carotenoid pathway but the mechanism is not completely understood. This work investigates phytochrome regulation of 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and phytoene synthase (PSY), two key enzymes of carotenogenesis. A simple procedure for the assay of PSY from crude pericarp extracts was developed and mRNA levels of DXS and PSY1 genes were measured by relative RT-PCR. Discs from mature green tomatoes were ripened in total darkness, or in darkness interrupted by brief daily treatments of red light, or red light followed by far red light. After ten days of incubation, lycopene levels of red light-treated discs had reached ≈12 mg/100 g fresh weight; nearly a 50% increase over discs ripened in total darkness. This increase was not observed in discs treated with red light followed by far red light, demonstrating the red/far red reversibility (and thus phytochrome control) of carotenoid accumulation. Similar patterns of phytochrome control are observed for PSY activity but not for DXS and PSY1 transcript levels, suggesting the mechanism of control may be at the level of post-translational modification of PSY. Potential applications of this regulation of carotenoid accumulation will be discussed.


2018 ◽  
Vol 13 (3) ◽  
pp. 1934578X1801300
Author(s):  
Do Manh Cuong ◽  
Jae Kwang Kim ◽  
Jin Jeon ◽  
Tae Jin Kim ◽  
Jong Seok Park ◽  
...  

Carotenoids belong to a large group of secondary metabolites, and have pivotal roles in plants, including photosynthesis and phytohormone synthesis, pigmentation, and membrane stabilization. Additionally, carotenoids are potent antioxidants, and their health benefits are becoming increasingly prominent. In recent years, carotenoids have been studied in many plants. Furthermore, gene expression, as well as carotenoid accumulation in different parts of the bitter melon, has been investigated; however, it has not been studied in bitter melon seedlings. In this study, carotenoid accumulation and transcript levels of McGGPPS1, McGGPPS2, McPSY, McPDS, McZDS, McLCYB, McLCYE1, McLCYE2, McCXHB, and McZEP, involved in carotenoid biosynthesis, were analyzed during seedling development using HPLC and qRT-PCR. The major carotenoids that accumulated in the bitter melon seedlings were lutein and E-β-carotene. The expression of most carotenoid biosynthetic genes increased during seedling development, consistent with the accumulation of violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, 13Z-β-carotene, E-β-carotene, and 9Z-β-carotene in bitter melon seedlings. The results of this study provide a firm basis for comprehending the link between gene expression and carotenoid concentration in bitter melon seedlings.


2010 ◽  
Vol 12 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Lake-Ee Quek ◽  
Stefanie Dietmair ◽  
Jens O. Krömer ◽  
Lars K. Nielsen

1975 ◽  
Vol 30 (5-6) ◽  
pp. 333-336 ◽  
Author(s):  
H. W. Kümmel ◽  
L. H. Grimme

Abstract Prolonged cultivation of the green alga Chlorella fusca under heterotrophic conditions and in the presence of sub-lethal concentrations of SAN H 6706 (4-chloro-5-(dimethylamino)-2-(α,α,α-tri-fluoro-m-tolyl)-3 (2H)-pyridazinone) leads to an accumulation of phytoene and phytofluene. The content of chlorophylls and coloured carotenoids of the cells treated with this herbicide, compared with normal untreated cells, is diminished by about 90% and 95% respectively, but the total amount of carotenoids, including colourless phytoene and phytofluene, is increased by 65%. This suggests that SAN H 6706 causes increased accumulation of carotenoids by eliminating a biosynthetic control mechanism, so that the endproducts of the biosynthetic chain no longer control the rate of precursor formation.


2008 ◽  
Vol 75 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Roberto Rodríguez-Ortiz ◽  
M. Carmen Limón ◽  
Javier Avalos

ABSTRACT The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.


Sign in / Sign up

Export Citation Format

Share Document