Fast Atom Bombardment-Mass Spectrometry (FAB-MS): Sample Preparation and Analytical Strategies

2021 ◽  
pp. 217-235
Author(s):  
Anne Dell ◽  
Jane E. Thomas-Oates
2019 ◽  
Vol 10 (1) ◽  
pp. 429-455 ◽  
Author(s):  
Bing Shao ◽  
Hui Li ◽  
Jianzhong Shen ◽  
Yongning Wu

Nontargeted workflows for chemical hazard analyses are highly desirable in the food safety and integrity fields to ensure human health. Two different analytical strategies, nontargeted metabolomics and chemical database filtering, can be used to screen unknown contaminants in food matrices. Sufficient mass and chromatographic resolutions are necessary for the detection of compounds and subsequent componentization and interpretation of candidate ions. Analytical chemistry–based technologies, including gas chromatography–mass spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and capillary electrophoresis–mass spectrometry (CE-MS), combined with chemometrics analysis are being used to generate molecular formulas of compounds of interest. The construction of a chemical database plays a crucial role in nontargeted detection. This review provides an overview of the current sample preparation, analytical chemistry–based techniques, and data analysis as well as the limitations and challenges of nontargeted detection methods for analyzing complex food matrices. Improvements in sample preparation and analytical platforms may enhance the relevance of food authenticity, quality, and safety.


2020 ◽  
Author(s):  
Paul Dominic B. Olinares ◽  
Jin Young Kang ◽  
Eliza Llewellyn ◽  
Courtney Chiu ◽  
James Chen ◽  
...  

1999 ◽  
Vol 64 (8) ◽  
pp. 1357-1368 ◽  
Author(s):  
Enric Brillas ◽  
José Carrasco ◽  
Ramon Oliver ◽  
Francesc Estrany ◽  
Víctor Ruiz

The electropolymerization of 2,5-di(2-(thienyl)pyrrole) (SNS) on a Pt electrode from ethanolic solution with LiClO4 or LiCl as electrolyte has been studied by cyclic voltammetry (CV) and chronoamperometry (CA). In both media, a quasi-reversible process has been indicated by CV, reversing the scan at low oxidation potentials. Under these conditions, reducible positive charges formed in both oxidized polymers are compensated by the entrance of anions from solution. Elemental analysis reveals that polymers generated at a low oxidation potential by CA contain a 21.03% (w/w) of ClO4- or a 9.56% (w/w) of Cl-. The poly(SNS) doped with Cl- presents higher proportion of reducible positive charges, higher polymerization charge and lower productivity. A much higher electrical conductivity, however, has been found for the poly(SNS) doped with ClO4-. Both polymers are soluble in DMSO, acetone and methanol. The dimer, trimer, tetramer and pentamer have been detected as soluble and neutral linear oligomers by mass spectrometry-fast atom bombardment. The analysis of polymers by infrared spectroscopy confirms the predominant formation of linear molecules with α-α linkages between monomeric units. A condensation mechanism involving one-electron oxidation of all electrogenerated linear and neutral polymeric chains is proposed to explain the SNS electropolymerization.


Author(s):  
Riccardo Zecchi ◽  
Pietro Franceschi ◽  
Laura Tigli ◽  
Davide Amidani ◽  
Chiara Catozzi ◽  
...  

AbstractCorticosteroids as budesonide can be effective in reducing topic inflammation processes in different organs. Therapeutic use of budesonide in respiratory diseases, like asthma, chronic obstructive pulmonary disease, and allergic rhinitis is well known. However, the pulmonary distribution of budesonide is not well understood, mainly due to the difficulties in tracing the molecule in lung samples without the addition of a label. In this paper, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging protocol that can be used to visualize the pulmonary distribution of budesonide administered to a surfactant-depleted adult rabbit. Considering that budesonide is not easily ionized by MALDI, we developed an on-tissue derivatization method with Girard’s reagent P followed by ferulic acid deposition as MALDI matrix. Interestingly, this sample preparation protocol results as a very effective strategy to raise the sensitivity towards not only budesonide but also other corticosteroids, allowing us to track its distribution and quantify the drug inside lung samples. Graphical abstract


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 468
Author(s):  
Anthony E. Jones ◽  
Nataly J. Arias ◽  
Aracely Acevedo ◽  
Srinivasa T. Reddy ◽  
Ajit S. Divakaruni ◽  
...  

Coenzyme A (CoA) is an essential cofactor for dozens of reactions in intermediary metabolism. Dysregulation of CoA synthesis or acyl CoA metabolism can result in metabolic or neurodegenerative disease. Although several methods use liquid chromatography coupled with mass spectrometry/mass spectrometry (LC-MS/MS) to quantify acyl CoA levels in biological samples, few allow for simultaneous measurement of intermediates in the CoA biosynthetic pathway. Here we describe a simple sample preparation and LC-MS/MS method that can measure both short-chain acyl CoAs and biosynthetic precursors of CoA. The method does not require use of a solid phase extraction column during sample preparation and exhibits high sensitivity, precision, and accuracy. It reproduces expected changes from known effectors of cellular CoA homeostasis and helps clarify the mechanism by which excess concentrations of etomoxir reduce intracellular CoA levels.


1984 ◽  
Vol 259 (17) ◽  
pp. 10801-10806
Author(s):  
B W Gibson ◽  
W C Herlihy ◽  
T S Samy ◽  
K S Hahm ◽  
H Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document