The structure of displacement cascades in III–V semiconductors

Author(s):  
T J Chandler ◽  
M L Jenkins
2014 ◽  
Vol 66 (1) ◽  
pp. 112-117 ◽  
Author(s):  
Xiaodan Yang ◽  
Huiqiu Deng ◽  
Nengwen Hu ◽  
Shifang Xiao ◽  
Cuilan Ren ◽  
...  

2021 ◽  
Vol 170 ◽  
pp. 105162
Author(s):  
Hai Huang ◽  
Bin Cai ◽  
Huan Li ◽  
Xiaoting Yuan ◽  
Yanan Jin

2000 ◽  
Vol 650 ◽  
Author(s):  
C. Domain ◽  
C.S. Becquart ◽  
J.C. van Duysen

ABSTRACTThe Pressurized Water Reactor vessel steels are embrittled by neutron irradiation. Among the solute atoms, copper play an important role in the embrittlement and different Cu-rich defects have been experimentally observed to form. We have investigated by Kinetic Monte Carlo (KMC) on rigid lattices the evolution of the primary damage. Since the point defects created by the displacement cascades have very different kinetics, their evolution is tracked in two steps. In a first step, we have studied their recombination in the cascade region and the formation of interstitial clusters using “object diffusion”. The parameters of this model are based on MD simulations, or on first principles calculations. In a second part, we have investigated the subsequent evolution of the primary damage with a model based on a vacancy jump mechanism. These simulations which rely on an adapted EAM potential show the formation of copper rich defects. Some of the potential's predictions that played a key role in the model were checked by ab initio calculations. The defects obtained from these simulations, subsequent to the primary damage created by displacement cascades, exhibit similarities with the ones observed by atom probe. The influence of temperature and Cu content on the final damage was investigated.


1988 ◽  
Vol 38 (10) ◽  
pp. 7118-7120 ◽  
Author(s):  
C. P. Flynn ◽  
R. S. Averback

Author(s):  
Mohammad Abu-Shams ◽  
Jeffery Moran ◽  
Ishraq Shabib

Abstract The effects of radiation damage on bcc tungsten with preexisting helium and hydrogen clusters have been investigated in a high-energy environment via a comprehensive molecular dynamics simulation study. This research determines the interactions of displacement cascades with helium and hydrogen clusters integrated into a tungsten crystal generating point defect statistics. Helium or hydrogen clusters of atoms~0.1% of the total number of atoms have been randomly distributed within the simulation model and primary knock-on-atom (PKA) energies of 2.5, 5, 7.5 and 10 keV have been used to generate displacement cascades. The simulations quantify the extent of radiation damage during a simulated irradiation cycle using the Wigner-Seitz point defect identification technique. The generated point defects in crystals with and without pre-existing helium/hydrogen defects exhibit a power relationship with applied PKA energy. The point defects are classified by their atom type, defect type, and distribution within the irradiated model. The presence of pre-existing helium and hydrogen clusters significantly increases the defects (5 - 15 times versus pure tungsten models). The vacancy composition is primarily tungsten (e. g., ~70% at 2.5 keV) in models with pre-existing helium, but the interstitials are primarily He (e. g., ~89% at 10 keV). On the other hand, models with pre-existing hydrogen have a vacancy composition that is primarily tungsten (more than 90% irrespective of PKA energy), and the interstitial composition is more balanced between tungsten (average 46%) and hydrogen (average 54%) interstitials across the PKA range. The distribution of the atoms reveals that the tungsten point defects prefer to reside close to the position of cascade initiation, but helium or hydrogen defects reside close to the positions where clusters are built.


Sign in / Sign up

Export Citation Format

Share Document