Soil Weed Seed Banks and Weed Management

Author(s):  
Jack Dekker
Keyword(s):  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7650 ◽  
Author(s):  
Xian Gu ◽  
Yu Cen ◽  
Liyue Guo ◽  
Caihong Li ◽  
Han Yuan ◽  
...  

The long-term use of herbicides to remove weeds in fallow croplands can impair soil biodiversity, affect the quality of agricultural products, and threaten human health. Consequently, the identification of methods that can effectively limit the weed seed bank and maintain fallow soil fertility without causing soil pollution for the next planting is a critical task. In this study, four weeding treatments were established based on different degrees of disturbance to the topsoil: natural fallow (N), physical clearance (C), deep tillage (D), and sprayed herbicide (H). The changes in the soil weed seed banks, soil nutrients, and soil microbial biomass were carefully investigated. During the fallow period, the C treatment decreased the annual and biennial weed seed bank by 34% against pretreatment, whereas the H treatment did not effectively reduce the weed seed bank. The D treatment had positive effects on the soil fertility, increasing the available nitrogen 108% over that found in the N soil. In addition, a pre-winter deep tillage interfered with the rhizome propagation of perennial weeds. The total biomass of soil bacterial, fungal, and actinomycete in H treatment was the lowest among the four treatments. The biomass of arbuscular mycorrhizal fungi in the N treatment was respectively 42%, 35%, and 91%, higher than that in the C, D, and H treatments. An ecological weeding strategy was proposed based on our findings, which called for exhausting seed banks, blocking seed transmission, and taking advantage of natural opportunities to prevent weed growth for fallow lands. This study could provide a theoretical basis for weed management in fallow fields and organic farming systems.


1999 ◽  
Vol 2 (1) ◽  
pp. 139-166 ◽  
Author(s):  
Jack Dekker
Keyword(s):  

Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 161 ◽  
Author(s):  
Hugh J. Beckie ◽  
Michael B. Ashworth ◽  
Ken C. Flower

This review covers recent developments and trends in herbicide-resistant (HR) weed management in agronomic field crops. In countries where input-intensive agriculture is practiced, these developments and trends over the past decade include renewed efforts by the agrichemical industry in herbicide discovery, cultivation of crops with combined (stacked) HR traits, increasing reliance on preemergence vs. postemergence herbicides, breeding for weed-competitive crop cultivars, expansion of harvest weed seed control practices, and advances in site-specific or precision weed management. The unifying framework or strategy underlying these developments and trends is mitigation of viable weed seeds into the soil seed bank and maintaining low weed seed banks to minimize population proliferation, evolution of resistance to additional herbicidal sites of action, and spread. A key question going forward is: how much weed control is enough to consistently achieve the goal of low weed seed banks? The vision for future HR weed management programs must be sustained crop production and profitability with reduced herbicide (particularly glyphosate) dependency.


2020 ◽  
Vol 10 ◽  
pp. 1-14
Author(s):  
Charles N. Nyamwamu ◽  
Rebecca Karanja ◽  
Peter Mwangi

This study sought to determine the relation between soil weed seed bank and weed management practices and diversity in farms in Kisii Central Sub County, Western Kenya. Eight administrative sub-locations were randomly selected. Ten farms were selected at equal distance along transect laid across each sub-location. Weed soil seed bank was assessed from soil samples collected from each of the farms; a sub-sample was taken from a composite sample of ten soil cores of 5cm diameter and 15cm deep and placed in germination trays in a greenhouse. Weed diversity in soil weed seedbank was calculated using the Shannon index (H’). Twelve weed species from 12 genera of nine families were recorded. Diversity of the weed species in soil weed seed bank was (H'=1.48). Weed management practises significantly affected weed species soil weed seedbank reserves. Use of inefficient and ineffective hand-weeding techniques resulted in high weed species diversity and abundance.


Weed Science ◽  
1987 ◽  
Vol 35 (3) ◽  
pp. 328-332 ◽  
Author(s):  
Robert M. Menges

The influence of two weed management systems was determined on weed seed and seedling populations and on yields of cantaloupe (Cucumis meloL. var.reticulatusNaudin ‘Perlita′), bell pepper (Capsicum annuumL. var.grossum‘Grande Rio 66′), cotton (Gossypium hirsutumL. ‘CP 3374′), onion (Allium cepaL. ‘1015Y′), and cabbage (Brassica oleracea, var.capitataL. 'Sanibel′) sequentially grown in two 3-yr cycles. Palmer amaranth (Amaranthus palmeriS. Wats. # AMAPA) did not exist initially, but hurricane-introduced seed populations increased to 1.1 billion/ha as seed populations of common purslane (Portulaca oleraceaL. # POROL) decreased from 786 million/ha to 124 million/ha in the 6-yr period, without weeding or herbicide. Use of herbicides and handweeding reduced Palmer amaranth seed populations 98%, but 18 million/ha still remained after 6 yr. The use of herbicides and Palmer amaranth interference decreased the seed populations of common purslane by 84%, but handweeding was inefficient. Yields of all but the first crop of cantalouple were almost totally eliminated by season-long interference of Palmer amaranth. Savings with the utilization of herbicides rather than handweeding ranged from $62/ha for cotton to $4703/ha for bell pepper.


2001 ◽  
Vol 41 (8) ◽  
pp. 1179 ◽  
Author(s):  
S. R. Walker ◽  
G. R. Robinson ◽  
R. W. Medd

The competitive advantage of barley compared with wheat was quantified for suppressing seed production of Avena ludoviciana Durieu. (wild oats) andPhalaris paradoxa L. (paradoxa grass), and for improving herbicide effectiveness on these major winter grass weeds of the subtropical grain region of Australia. Eight field experiments were broadcast with weed seed before sowing wheat or barley, in which the emerged weeds were then treated with 4 herbicide doses (0, 25, 50, 100% of recommended rates). Yield reduction from untreated weeds was on average 4 times greater in wheat than in barley, with greater losses from A. ludoviciana than P. paradoxa. Barley did not affect weed emergence, but suppressed weed tiller density and, to a lesser extent, the number of weed seeds per tiller. Seed production was, on average, 4340 and 5105 seeds/m2 for A. ludoviciana and P. paradoxa, respectively, in untreated wheat compared with 555 and 50 seeds/m2 in untreated barley. Weed seed production following treatment with 25% herbicide rate in barley was similar or less than that after treatment with 100% herbicide rate in wheat. Overall, 25% herbicide rate was optimal for both conserving yield and minimising weed seed production in barley. For wheat, maximum yield was achieved with 50% herbicide but weed seed production was lowest with 100% herbicide rate. This indicates that weeds can be effectively controlled in barley with considerably less herbicide than required in wheat, highlighting the importance of including barley as a part of weed management strategies that aim to reduce herbicide inputs.


2016 ◽  
Vol 216 ◽  
pp. 269-273 ◽  
Author(s):  
Richard G. Smith ◽  
Lesley W. Atwood ◽  
Matthew B. Morris ◽  
David A. Mortensen ◽  
Roger T. Koide

Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Erin C. Hill ◽  
Karen A. Renner ◽  
Mark J. VanGessel ◽  
Robin R. Bellinder ◽  
Barbara A. Scott

Integrated weed management (IWM) for agronomic and vegetable production systems utilizes all available options to effectively manage weeds. Late-season weed control measures are often needed to improve crop harvest and stop additions to the weed seed bank. Eliminating the production of viable weed seeds is one of the key IWM practices. The objective of this research was to determine how termination method and timing influence viable weed seed production of late-season weed infestations. Research was conducted in Delaware, Michigan, and New York over a 2-yr period. The weeds studied included: common lambsquarters, common ragweed, giant foxtail, jimsonweed, and velvetleaf. Three termination methods were imposed: cutting at the plant base (simulating hand hoeing), chopping (simulating mowing), and applying glyphosate. The three termination timings were flowering, immature seeds present, and mature seeds present. Following termination, plants were stored in the field in mesh bags until mid-Fall when seeds were counted and tested for viability. Termination timing influenced viable seed development; however, termination method did not. Common ragweed and giant foxtail produced viable seeds when terminated at the time of flowering. All species produced some viable seed when immature seeds were present at the time of termination. The time of viable seed formation varied based on species and site-year, ranging from plants terminated the day of flowering to 1,337 growing degree d after flowering (base 10, 0 to 57 calendar d). Viable seed production was reduced by 64 to 100% when common lambsquarters, giant foxtail, jimsonweed, and velvetleaf were terminated with immature seeds present, compared to when plants were terminated with some mature seeds present. Our results suggest that terminating common lambsquarters, common ragweed, and giant foxtail prior to flowering, and velvetleaf and jimsonweed less than 2 and 3 wk after flowering, respectively, greatly reduces weed seed bank inputs.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 683-694 ◽  
Author(s):  
Alberto Collavo ◽  
Silvia Panozzo ◽  
Antonio Allegri ◽  
Maurizio Sattin

Italian ryegrass populations investigated in this study were harvested in an alfalfa-based cropping system. In that system, the agronomic practices and chemical weed management, based on the use of aryloxyphenoxy-propionates herbicides (i.e., quizalofop ethyl ester), were optimized to obtain a dual seed–forage production. Five of seven populations tested were confirmed resistant to quizalofop ethyl ester with resistance indexes ranging from 4.5 to >209. Both target- and nontarget-site resistance mechanisms were most likely involved. Three allelic variants were detected (Ile-1781–Leu, Trp-2027–Cys, and Ile-2041–Asn) in four resistant populations, whereas no known mutations were found in one resistant population. The herbicide treatment on Italian ryegrass plants at different phenological stages suggested that to control regrowth, it is necessary to use two to fives times the herbicide dose suitable for younger plants. This situation is encountered in fields when Italian ryegrass plants need to be controlled to maximize the alfalfa seed production, and it is comparable to using a sublethal herbicide dose, leading to the selection of herbicide-resistant biotypes. In such a situation, the cropping system is not sustainable, and integrated weed management should be implemented to deplete the soil weed seed bank and prevent new weed seed production.


Sign in / Sign up

Export Citation Format

Share Document