scholarly journals A “Stressed” Alfalfa-Based Cropping System Leads to the Selection of Quizalofop-Resistant Italian Ryegrass (Lolium perennessp.multiflorum)

Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 683-694 ◽  
Author(s):  
Alberto Collavo ◽  
Silvia Panozzo ◽  
Antonio Allegri ◽  
Maurizio Sattin

Italian ryegrass populations investigated in this study were harvested in an alfalfa-based cropping system. In that system, the agronomic practices and chemical weed management, based on the use of aryloxyphenoxy-propionates herbicides (i.e., quizalofop ethyl ester), were optimized to obtain a dual seed–forage production. Five of seven populations tested were confirmed resistant to quizalofop ethyl ester with resistance indexes ranging from 4.5 to >209. Both target- and nontarget-site resistance mechanisms were most likely involved. Three allelic variants were detected (Ile-1781–Leu, Trp-2027–Cys, and Ile-2041–Asn) in four resistant populations, whereas no known mutations were found in one resistant population. The herbicide treatment on Italian ryegrass plants at different phenological stages suggested that to control regrowth, it is necessary to use two to fives times the herbicide dose suitable for younger plants. This situation is encountered in fields when Italian ryegrass plants need to be controlled to maximize the alfalfa seed production, and it is comparable to using a sublethal herbicide dose, leading to the selection of herbicide-resistant biotypes. In such a situation, the cropping system is not sustainable, and integrated weed management should be implemented to deplete the soil weed seed bank and prevent new weed seed production.

2004 ◽  
Vol 18 (3) ◽  
pp. 733-741 ◽  
Author(s):  
John T. O'Donovan ◽  
Jeff C. Newman ◽  
K. Neil Harker ◽  
George W. Clayton

Glyphosate-resistant canola was seeded at Vegreville, Alberta, in 1997 and 1999 and barley in rotation with the canola in 1998 at three seeding rates. The effects, at each crop seeding rate, of variable glyphosate (canola) and tralkoxydim plus bromoxynil plus MCPA (barley) rates on crop yield, net economic return and seed production by wild oat, wild mustard, and wild buckwheat, and the amount of weed seed in the soil seed bank was determined. Crop seeding rate influenced the response of canola and barley yield and weed seed production to herbicide rate. At the lowest crop seeding rates, yield responses tended to be parabolic with yields increasing up to one-half and three-quarters of the recommended herbicide rates and trends toward reduced yields at the full rates. This response was not evident at the higher crop seeding rates, where, in most cases the yield reached a maximum between one-half and the full recommended rate. The effects of the herbicides on weed seed production, especially at the lowest rate, were often superior at the higher crop seeding rates. The results indicate that seeding canola and barley at relatively high rates may reduce risk associated with lower crop yields and increased weed seed production at lower than recommended herbicide rates. However, the current cost of herbicide-resistant canola seed may preclude the adoption of this integrated weed management practice by growers.


2005 ◽  
Vol 75 (4) ◽  
pp. 79-84 ◽  
Author(s):  
D. Shaner

Some of the first products of biotechnology to reach the marketplace have been herbicide-resistant crops. Industry sees the development of herbicide-resistant varieties as a way to increase the availability of proven herbicides for a broader range of crops. However, the development of herbicide- resistant crops requires special attention to potential environmental questions such as herbicide usage, selection of resistant weed biotypes and spread of resistance from the resistant crop to wild species. Industry is actively addressing these concerns during the process of development. Proper development and use of herbicide-resistant crops in integrated weed management programs will provide farmers with increased flexibility, efficiency, and decreased cost in their weed control practices without increasing the risk of herbicide-resistant weeds. Furthermore, herbicide-resistant crops should prove to be valuable tools in managing herbicide- resistant weeds.


2001 ◽  
Vol 41 (8) ◽  
pp. 1179 ◽  
Author(s):  
S. R. Walker ◽  
G. R. Robinson ◽  
R. W. Medd

The competitive advantage of barley compared with wheat was quantified for suppressing seed production of Avena ludoviciana Durieu. (wild oats) andPhalaris paradoxa L. (paradoxa grass), and for improving herbicide effectiveness on these major winter grass weeds of the subtropical grain region of Australia. Eight field experiments were broadcast with weed seed before sowing wheat or barley, in which the emerged weeds were then treated with 4 herbicide doses (0, 25, 50, 100% of recommended rates). Yield reduction from untreated weeds was on average 4 times greater in wheat than in barley, with greater losses from A. ludoviciana than P. paradoxa. Barley did not affect weed emergence, but suppressed weed tiller density and, to a lesser extent, the number of weed seeds per tiller. Seed production was, on average, 4340 and 5105 seeds/m2 for A. ludoviciana and P. paradoxa, respectively, in untreated wheat compared with 555 and 50 seeds/m2 in untreated barley. Weed seed production following treatment with 25% herbicide rate in barley was similar or less than that after treatment with 100% herbicide rate in wheat. Overall, 25% herbicide rate was optimal for both conserving yield and minimising weed seed production in barley. For wheat, maximum yield was achieved with 50% herbicide but weed seed production was lowest with 100% herbicide rate. This indicates that weeds can be effectively controlled in barley with considerably less herbicide than required in wheat, highlighting the importance of including barley as a part of weed management strategies that aim to reduce herbicide inputs.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Erin C. Hill ◽  
Karen A. Renner ◽  
Mark J. VanGessel ◽  
Robin R. Bellinder ◽  
Barbara A. Scott

Integrated weed management (IWM) for agronomic and vegetable production systems utilizes all available options to effectively manage weeds. Late-season weed control measures are often needed to improve crop harvest and stop additions to the weed seed bank. Eliminating the production of viable weed seeds is one of the key IWM practices. The objective of this research was to determine how termination method and timing influence viable weed seed production of late-season weed infestations. Research was conducted in Delaware, Michigan, and New York over a 2-yr period. The weeds studied included: common lambsquarters, common ragweed, giant foxtail, jimsonweed, and velvetleaf. Three termination methods were imposed: cutting at the plant base (simulating hand hoeing), chopping (simulating mowing), and applying glyphosate. The three termination timings were flowering, immature seeds present, and mature seeds present. Following termination, plants were stored in the field in mesh bags until mid-Fall when seeds were counted and tested for viability. Termination timing influenced viable seed development; however, termination method did not. Common ragweed and giant foxtail produced viable seeds when terminated at the time of flowering. All species produced some viable seed when immature seeds were present at the time of termination. The time of viable seed formation varied based on species and site-year, ranging from plants terminated the day of flowering to 1,337 growing degree d after flowering (base 10, 0 to 57 calendar d). Viable seed production was reduced by 64 to 100% when common lambsquarters, giant foxtail, jimsonweed, and velvetleaf were terminated with immature seeds present, compared to when plants were terminated with some mature seeds present. Our results suggest that terminating common lambsquarters, common ragweed, and giant foxtail prior to flowering, and velvetleaf and jimsonweed less than 2 and 3 wk after flowering, respectively, greatly reduces weed seed bank inputs.


Weed Science ◽  
1998 ◽  
Vol 46 (4) ◽  
pp. 447-453 ◽  
Author(s):  
John R. Teasdale

Research was conducted to determine the optimum population and row spacing for corn production and for suppressing velvetleaf growth and seed production. Corn was grown in a factorial arrangement of three populations targeted at 64,000 (1 ×), 96,000 (1.5 ×), or 128,000 (2 ×) plants ha−1and two row spacings of 38 or 76 cm. Influences on corn were determined in weed-free plots, and influences on velvetleaf were determined for target plants established at 1.5–m intervals along the center of corn interrows. Four velvetleaf plantings were made at weekly intervals beginning at corn planting. Corn row spacing had little influence on corn or velvetleaf. Corn yield exhibited a parabolic response to population with a maximum of approximately 90,000 plants ha−1in one year, no response to population in another year, and a linear decline with increasing population in a dry year. Velvetleaf seed production was reduced 69 to 94% by the 1.5 × population and 99% by the 2 × population compared to the standard 1 × population when velvetleaf emerged with corn. Velvetleaf seed production was eliminated when velvetleaf emerged at or later than corn leaf stages 3, 5, and 6 for corn populations of 2 ×, 1.5 ×, and 1 ×, respectively. Reduced velvetleaf seed production was correlated with lower positioning of plants in the corn canopy and reduced light availability. Results suggest that higher corn populations could aid integrated weed management strategies by reducing seed production and limiting the build-up of weed populations.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 671
Author(s):  
Jane Kelly ◽  
Allison Chambers ◽  
Paul Weston ◽  
William Brown ◽  
Wayne Robinson ◽  
...  

Barley grass (Hordeum murinum subsp. glaucum.) is an annual weed associated with grain revenue loss and sheep carcass damage in southern Australia. Increasing herbicide resistance led to a recent investigation into effective integrated weed management strategies for barley grass in southern Australia. Field studies in Wagga Wagga, New South Wales (NSW) during 2016 and 2017 examined the effect of post-emergent herbicide applications and strategic defoliation by mowing on barley grass survival and seed production in a mixed legume pasture. Statistically significant differences between herbicide-only treatments in both years showed propaquizafop to be more than 98% effective in reducing barley grass survival and seed production. Paraquat was not effective in controlling barley grass (58% efficacy), but led to a 36% and 63.5% decrease in clover and other weed biomass, respectively, after 12 months and increased lucerne biomass by over three-fold after 24 months. A single repeated mowing treatment resulted in a 46% decline in barley grass seedling emergence after 12 months and, when integrated with herbicide applications, reduced other weed biomass after 24 months by 95%. Resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides observed in local barley grass populations led to additional and more focused investigation comparing the efficacy of other pre- and post-emergent herbicides for barley grass management in legume pastures. Haloxyfop-R + simazine or paraquat, applied at early tillering stage, were most efficacious in reducing barley grass survival and fecundity. Impact of defoliation timing and frequency on barley grass seedlings was also evaluated at various population densities, highlighting the efficacy of repeated post-inflorescence defoliations in reducing plant survival and seed production. Results highlight the importance of optimal environmental conditions and application timing in achieving efficacious control of barley grass and improving pasture growth and biomass accumulation.


2011 ◽  
Vol 4 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Timothy W. Miller ◽  
Danielle E. D'Auria

AbstractWild chervil is an invasive biennial or short-lived perennial weed introduced into North America that negatively impacts forage production and degrades habitat for native plant species. A 2-yr study using prebloom mowing followed by combinations of herbicide, tillage, and grass seeding was conducted in the Pacific Northwest to identify an effective integrated weed management strategy for this species. By 2 mo after herbicide treatment (MAHT), wild chervil control with glyphosate + ammonium sulfate (AMS) and clopyralid was 83 and 73%, respectively. Tillage with or without herbicide pretreatment resulted in 92 to 98% wild chervil control at 2 MAHT, whereas herbicide without tillage gave only 45% control across all treatments. Tillage with or without subsequent grass seeding reduced wild chervil density four-fold compared to herbicide alone at 9 MAHT. Herbicide + tillage + grass seeding resulted in similar wild chervil cover (1 to 5% cover) as herbicide + tillage (1 to 6% cover) without subsequent grass seeding. Wild chervil biomass at 1 yr after herbicide treatment (YAHT) was reduced to 487 kg ha−1 (439 lb ac−1) with herbicide + tillage compared to 4,256 kg ha−1 for herbicide treatment alone. Herbicide + tillage + grass seeding increased grass dry weight at 1 YAHT from 201 kg ha−1 for herbicide + tillage to 1,575 kg ha−1, compared to 351 kg ha−1 in herbicide-only plots.


2008 ◽  
Vol 22 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Andrew W. Lenssen

In the semiarid northern Great Plains, the adoption of zero tillage improves soil water conservation, allowing for increased crop intensification and diversification. Zero-tillage crop production relies heavily on herbicides for weed management, particularly the herbicide glyphosate, increasing selection pressure for herbicide-resistant weeds. Barley is well adapted to the northern Great Plains, and may be a suitable herbicide-free forage crop in zero-tillage systems. A 2-yr field study was conducted to determine if planting date influenced crop and weed biomass, water use (WU), and water-use efficiency (WUE) of barley and weed seed production in three preplant weed management systems: (1) conventional preplant tillage with a field cultivator (TILL); (2) zero tillage with preemergence glyphosate application (ZTPRE); and (3) zero tillage without preemergence glyphosate (ZT). None of the systems included an in-crop herbicide. Planting dates were mid-April (early), late May (mid), and mid-June (delayed). Early planting of ZT barley resulted in excellent forage yields (7,228 kg/ha), similar to those from TILL and ZTPRE. Early planting resulted in a small accumulation of weed biomass, averaging 76 kg/ha, and no weed seed production regardless of preplant weed management system. Early planting resulted in higher WU than delayed planting, averaging 289 and 221 mm, respectively, across management systems and years. The WUE of crop and total biomass did not differ among preplant weed management systems at harvest from the early planting date. Delayed planting resulted in decreased forage yield with high amounts of weed biomass and seed production, especially in ZT. A pre-emergence glyphosate application was not necessary for early-planted ZT forage barley. Early planting of herbicide-free barley for forage can be an excellent addition to northern Great Plains cropping systems as part of a multitactic approach for improved weed and water management.


2012 ◽  
Vol 5 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Angelica M. Herrera-Reddy ◽  
Raymond I. Carruthers ◽  
Nicholas J. Mills

AbstractIntegrated weed management strategies (IWM) are being advocated and employed to control invasive plants species. In this study, we compared three management strategies (biological control alone [BC], BC with fire [BC + F], and BC with mowing [BC + M]) to determine if physical controls reduce seed production by Scotch broom and interfere with the action of the biological control agent—the Scotch broom seed weevil. We measured seed production and seed predation by the weevil at both pod and plant scale, and seed bank density over two field seasons. We found no difference in the number of seeds per pod among management strategies. However, combining management strategies (BC + M and BC + F) resulted in significant reductions in pods per plant, mature seeds per plant, and seed bank density relative to biological control alone. We did not find differences among management strategies in number of weevils per pod or proportion of seeds predated by the weevil at either pod or whole-plant scale. However, combining management strategies (BC + M and BC + F) resulted in a significant reduction in healthy mature seeds per plant relative to biological control alone. Although both integrated strategies outperformed biological control alone in reducing seed production and the seed bank, with no statistical difference between them, we propose that short-rotation prescribed fire could prove to be a more effective strategy for long-term management of Scotch broom due to its potential for slightly greater depletion of the seed bank.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 292
Author(s):  
Prashant Sharma ◽  
Manoj Kumar Singh ◽  
Kamlesh Verma ◽  
Saroj Kumar Prasad

The rice–wheat cropping system in the Indo-Gangetic Plains is the backbone of food security in India. In the 1990s, due to the scarcity of resources, the traditional Crop Establishment (CE) method shifted from Conventional Till Puddle Transplanted Rice (CTPTR) to CT Direct Seeded Rice (CTDSR) and Zero-Till DSR (ZTDSR) in paddy; and in wheat, from Conventional Till Wheat (CTW) to Zero Till Wheat (ZTW), with residue retention in rice (RRR) or in both rice and wheat (RRRW). Shift in CE methods led to change in Weed Seed Bank (WSB) dynamics and ultimately affected the weed management program. After five years of field trials, soil samples were drawn as per 2-factors factorial randomized block design. Factor-I comprised 4-CE methods, whereas factor-II consisted of 3-soil depths (0–10, 10–20 and 20–30 cm). Results showed CTPTR-CTW and ZTDSR-ZTW (RRRW) record the highest seed bank (SB) of grasses, sedges and BLWs as total weeds, in general; and predominant weeds like Echinochloa spp., Ammania baccifera, Commelina benghalensis and Digitaria sanguinalis, in particular. It also showed the higher species richness (DMg) and Shannon–Weaver (H’) indices. CTDSR-CTW and CTDSR-ZTW (RRR) show the lowest WSB and at par with Shannon–Weaver (H’) index; further, lowest species richness (DMg) under CTDSR-CTW. Species Evenness (J’) and Simpson index (λ) vary non-significantly with CE methods. Furthermore, 0–10 cm soil depth showed the highest SB of different category of total weed, predominant weeds as well as higher values of DMg, H’, and λ; whereas reverse trend was observed in Whittaker Statistic (βW). Interaction between CE methods and soil depth revealed most of WSB lying on the top layer in case of ZTDSR-ZTW (RRRW) and CTDSR-ZTW (RRR); while CTPTR-CTW showed almost uniform WSB distribution, and in case of CTDSR-CTW, a gradual decrease in WSB with soil depth.


Sign in / Sign up

Export Citation Format

Share Document