Reliving forecasting theory to the “key position” of a huge ancient landslide body

Author(s):  
Manchao He ◽  
Xiong Wu ◽  
Xiaoming Sun ◽  
Zhaoyang Heng
2005 ◽  
Vol 2 ◽  
pp. 97-101 ◽  
Author(s):  
F. Sdao ◽  
S. Pascale ◽  
P. Rutigliano

Abstract. This paper reports the results of geological and geomorphological surveys and the first results of a still in progress GPS monitoring campaign, taken on a large and ancient landslide located near Avigliano town (Basilicata region, South Italy). The landslide occurs on structurally complex clayey-marly terrains and it is classifiable as a multiple and complex roto-translational-earthflow landslide. In the last years this landslide has been affected by frequent reactivations that have been the cause of grave damages to the urban structures in the area. During January 2004, in order to monitor the present kinematics of the landslide body, a GPS network was installed. Until today several GPS surveys have been carried out. The results of GPS data analysis show centimetres level motions going on the landslide. The final goal of the research will be to define a hazard evaluation and an evolution model of the landslide, using the integrated information coming from GPS and geomorphological surveys.


Author(s):  
Yu. K. Vasil’chuk ◽  
E. S. Slyshkina ◽  
A. V. Bershov

The article contains materials on the study of landslide deposits in the upper reaches of the Mzymta river basin. The results of14C analysis showed that the youngest landslides are common on the southern slope of the Psekhako Ridge and date back to less than 200 and 390±90, 400±70 years ago BP and more than 770±150 years BP. The most ancient landslide-collapse on the northern slope of the Aibga Ridge and dates back to 1110±90 years BP.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Landslides ◽  
2021 ◽  
Author(s):  
Chuang Song ◽  
Chen Yu ◽  
Zhenhong Li ◽  
Veronica Pazzi ◽  
Matteo Del Soldato ◽  
...  

AbstractInterferometric Synthetic Aperture Radar (InSAR) enables detailed investigation of surface landslide movements, but it cannot provide information about subsurface structures. In this work, InSAR measurements were integrated with seismic noise in situ measurements to analyse both the surface and subsurface characteristics of a complex slow-moving landslide exhibiting multiple failure surfaces. The landslide body involves a town of around 6000 inhabitants, Villa de la Independencia (Bolivia), where extensive damages to buildings have been observed. To investigate the spatial-temporal characteristics of the landslide motion, Sentinel-1 displacement time series from October 2014 to December 2019 were produced. A new geometric inversion method is proposed to determine the best-fit sliding direction and inclination of the landslide. Our results indicate that the landslide is featured by a compound movement where three different blocks slide. This is further evidenced by seismic noise measurements which identified that the different dynamic characteristics of the three sub-blocks were possibly due to the different properties of shallow and deep slip surfaces. Determination of the slip surface depths allows for estimating the overall landslide volume (9.18 · 107 m3). Furthermore, Sentinel-1 time series show that the landslide movements manifest substantial accelerations in early 2018 and 2019, coinciding with increased precipitations in the late rainy season which are identified as the most likely triggers of the observed accelerations. This study showcases  the potential of integrating InSAR and seismic noise techniques to understand the landslide mechanism from ground to subsurface.


2013 ◽  
Vol 16 (2) ◽  
pp. 29-32
Author(s):  
Dagmar Dobiašová ◽  
Jozef Streďanský ◽  
Lucia Tátošová

Abstract The formation or activation of landslide movements in Podtatranska kotlina is quite common, as it is flysh and volcanic area. There is a high incidence of sandstones in this area. The sandstones crumble and weather, and this is the reason why the subsoil becomes unstable. The rainfall is accumulated, and there is a danger of soil sliding down. There was located groundwater level in the central part of the slope (in the height of 30 cm), and in some parts, the water accumulation occurred in the depression places on the landslide body. There were created small landslide lakes, where the water was held during the year. The slope was soaked and the erosion started to increase. The slope with its instability has pushed the construction of road that leads underneath the heel of the slope. Neglected and improper construction in areas of slope landslides has become a relatively common phenomenon. Stabilization measures are often made up only when real problem occurs. An anthropogenic activity usually starts this problem. This refers to deforestation, grassing or deformation of slope stability in the heel by improper construction. The landslide was not the first one in the area. In 1898, there was the first landslide, but it was not as intensive as this one. Retaining wall was the only one stabilization measure which was built in that time. It also had a drainage outfall. However, during the summer months in 2010, the stabilization measure was disrupted and cracked. This occurrence started after the slope separation and by the foremost pressure on the given wing wall. During our measurements, we found out that in that area, there was a loss of plant cover, erosion accrued and soil physical properties changed. Our aim is to show the seriousness of the situation and propose appropriate stabilizing measures.


Author(s):  
Mohd Anjum ◽  
Sana Shahab ◽  
Mohammad Sarosh Umar

Grey forecasting theory is an approach to build a prediction model with limited data to produce better forecasting results. This forecasting theory has an elementary model, represented as the GM(1,1) model , characterized by the first-order differential equation of one variable. It has the potential for accurate and reliable forecasting without any statistical assumption. The research proposes a methodology to derive the modified GM(1,1) model with improved forecasting precision. The residual series is forecasted by the GM(1,1) model to modify the actual forecasted values. The study primarily addresses two fundamental issues: sign prediction of forecasted residual and the procedure for formulating the grey model. Accurate sign prediction is very complex, especially when the model lacks in data. The signs of forecasted residuals are determined using a multilayer perceptron to overcome this drawback. Generally, the elementary model is formulated conventionally, containing the parameters that cannot be calculated straightforward. Therefore, maximum likelihood estimation is incorporated in the modified model to resolve this drawback. Three statistical indicators, relative residual, posterior variance test, and absolute degree of grey indices, are evaluated to determine the model fitness and validation. Finally, an empirical study is performed using actual municipal solid waste generation data in Saudi Arabia, and forecasting accuracies are compared with the linear regression and original GM(1,1). The MAPEs of all models are rigorously examined and compared, and then it is obtained that the forecasting precision of GM(1,1) model , modified GM(1,1) model, and linear regression is 15.97%, 8.90%, and 27.90%, respectively. The experimental outcomes substantiate that the modified grey model is a more suitable forecasting approach than the other compared models.


2012 ◽  
Vol 52 (6) ◽  
pp. 231-247 ◽  
Author(s):  
Yasuhiko WAKIZAKA ◽  
Mutsuo KOZUMA ◽  
Hiroyuki WATATANI ◽  
Yoshiyuki TOYOGUCHI
Keyword(s):  

Author(s):  
Alexandra A. Islyamova ◽  
◽  
Valery S. Khoroshilov ◽  

The article discusses the possibilities of applying modeling of the stress-strain state of slopes to predict landslide hazard, which is very important for the successful implementation of all subsequent stages of design, construction and operation of engineering structures. The article considers the exist-ing approaches and methods used in the process of solving the problem, and determines the study as the type of mathematical modeling of the stress-strain state of a landslide body by the finite element method. It is shown that the selection of specific mathematical expressions for all subsequent calcula-tions is carried out depending on the specific type of landslide. The mechanisms of deformation and destruction of the slope under the action of gravitational forces are shown using the data of geodetic observations and engineering-geological surveys. As a result of the studies performed, calculations were made on several models illustrating the behavior of the soil massif of a landslide-prone slope. Stress patterns were obtained for a simple slope with a steepness of 35°, which coincide with the pre-viously published data of the physical experiment for the real open pit slope.


2021 ◽  
Vol 225 (2) ◽  
pp. 1032-1047
Author(s):  
A-S Mreyen ◽  
L Cauchie ◽  
M Micu ◽  
A Onaca ◽  
H-B Havenith

SUMMARY Origins of ancient rockslides in seismic regions can be controversial and must not necessarily be seismic. Certain slope morphologies hint at a possible coseismic development, though further analyses are required to better comprehend their failure history, such as modelling the slope in its pre-failure state and failure development in static and dynamic conditions. To this effect, a geophysical characterization of the landslide body is crucial to estimate the possible failure history of the slope. The Balta rockslide analysed in this paper is located in the seismic region of Vrancea-Buzau, Romanian Carpathian Mountains and presents a deep detachment scarp as well as a massive body of landslide deposits. We applied several geophysical techniques on the landslide body, as well as on the mountain crest above the detachment scarp, in order to characterize the fractured rock material as well as the dimension of failure. Electrical resistivity measurements revealed a possible trend of increasing fragmentation of rockslide material towards the valley bottom, accompanied by increasing soil moisture. Several seismic refraction surveys were performed on the deposits and analysed in form of P-wave refraction tomographies as well as surface waves, allowing to quantify elastic parameters of rock. In addition, a seismic array was installed close to the detachment scarp to analyse the surface wave dispersion properties from seismic ambient noise; the latter was analysed together with a colocated active surface wave analysis survey. Single-station ambient noise measurements completed all over the slope and deposits were used to further reveal impedance contrasts of the fragmented material over in situ rock, representing an important parameter to estimate the depth of the shearing horizon at several locations of the study area. The combined methods allowed the detection of a profound contrast of 70–90 m, supposedly associated with the maximum landslide material thickness. The entirety of geophysical results was used as basis to build up a geomodel of the rockslide, allowing to estimate the geometry and volume of the failed mass, that is, approximately 28.5–33.5 million m3.


Sign in / Sign up

Export Citation Format

Share Document