A Linear Dynamic Wear Model to Explain the Initiating Mechanism of Corrugation

Author(s):  
A.R. Valdivia
Author(s):  
Xi Zhang ◽  
Hua Xu ◽  
Wei Chang ◽  
Hui Xi ◽  
Shiyuan Pei ◽  
...  

A dynamic contact wear model of ball bearings consisting of wear degree and position distribution is proposed by integrating the developed contact wear model, multi-body dynamics and raceway waviness or ball diameter differences. Subsequently, the dynamic wear characteristics, not only for the ideal bearing under different axial and radial loads, but also for the bearing with above defects are analysed. The influences of load, typical waviness orders and amplitude on the wear of each ball against both raceways are evaluated and qualitatively validated. Finally, the dynamic characteristics of ball bearings with one ball larger are discussed, and then vibration frequency and wear rates distinction are verified by the experiment with working-surface roughness measurement as a way for wear rate assessment.


1989 ◽  
Vol 111 (3) ◽  
pp. 468-474 ◽  
Author(s):  
Ji-Yi Lin ◽  
H. S. Cheng

A wear model which permits the wear rate to be dependent on time is introduced to study the dynamic wear behavior observed in practice. In this model, it is postulated that the wear rate is proportional to a forcing term, I, which is contributed by the stress field induced by the frictional force at the asperity contacts; and inversely proportional to a wear resisting term, S, which is related to the material antiwear strength near the surface. One of the important characteristics of the dynamic wear model is that both I and S are now time dependent or wear dependent because when wear progresses the material strength at various layers would change and the stress field would also change as a result of the change of surface topography. Using this dynamic wear model, it is shown that the commonly observed running-in, steady-state, or accelerated wear phenomena can be explained.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Guo Xiang ◽  
Yanfeng Han ◽  
Tao He ◽  
Jiaxu Wang ◽  
Ke Xiao

Abstract The study presents a dynamic wear model for micro-grooved water-lubricated bearings considering the transient mixed elastohydrodynamic lubrication (mixed-EHL) condition. In the established model, the modified Archard wear model and the mixed-EHL model are bridged to study the transient interdependent relationship between the sliding wear behavior and the mixed-EHL performance. In order to consider the effect of the transient mixed-EHL performance on the sliding wear, the Archard model is extended to include the time-varying wear coefficient based on the fatigue concept. To verify the presented model, the comparisons with the experimental results available in the literatures have been conducted. In this study, the evolution of the wear and mixed-EHL performance distribution over time is predicted, and the impact of the radial clearance, boundary friction coefficient, and surface parameters on the numerical predictions is evaluated. The simulation results reveal that the worn region moves toward the rotational direction slowly. The simulation results also reveal that the wear rate and the wear coefficient first decrease considerably, and then decrease gently, and the sliding wear geometry promotes the hydrodynamic effects and reduces the asperity contact during the operation. Furthermore, the parametric study demonstrates that dynamic wear and mixed-EHL performance is sensitive to the radial clearance, boundary friction coefficient, and surface parameters.


2018 ◽  
Vol 1 (2) ◽  
pp. 9-14
Author(s):  
Marisol Cervantes-Bobadilla ◽  
Ricardo Fabricio Escobar Jiménez ◽  
José Francisco Gómez Aguilar ◽  
Tomas Emmanuel Higareda Pliego ◽  
Alberto Armando Alvares Gallegos

In this research, an alkaline water electrolysis process is modelled. The electrochemical electrolysis is carried out in an electrolyzer composed of 12 series-connected steel cells with a solution 30% wt of potassium hydroxide. The electrolysis process model was developed using a nonlinear identification technique based on the Hammerstein structure. This structure consists of a nonlinear static block and a linear dynamic block. In this work, the nonlinear static function is modelled by a polynomial approximation equation, and the linear dynamic is modelled using the ARX structure. To control the current feed to the electrolyzer an unconstraint predictive controller was implemented, once the unconstrained MPC was simulated, some restrictions are proposed to design a constrained MPC (CMPC). The CMPC aim is to reduce the electrolyzer's energy consumption (power supply current). Simulation results showed the advantages of using the CMPC since the energy (current) overshoots are avoided.


2019 ◽  
Vol 15 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Ali Samadzadeh ◽  
Iran Sheikhshoaie ◽  
Hassan Karimi-Maleh

Background: Simultaneous analysis of epinephrine and tyrosine as two effective and important biological compounds in human blood and urine samples are very important for the investigation of human health. Objective: In this research, a highly effective voltammetric sensor fabricated for simultaneous analysis of epinephrine and tyrosine. The sensor was fabricated by the modification of glassy carbon electrode with ZnO-Pt/CNTs nanocomposite (ZnO-Pt/CNTs/GCE). The synthesized nanocomposite was characterized by SEM method. The ZnO-Pt/CNTs/GCE showed two separated oxidation signals at potential ~220 mV and 700 mV for epinephrine and tyrosine, respectively. Also, we detected linear dynamic ranges 0.5-250.0 µM and 1.0-220 µM with a limit of detections 0.1 µM and 0.5 µM for the determination of epinephrine and tyrosine, respectively. The ZnO-Pt/CNTs/GCE was used for the determination of epinephrine and tyrosine in blood serum and human urine samples.


Sign in / Sign up

Export Citation Format

Share Document