Functional Regulation of CIP/KIP CDK Inhibitors

2013 ◽  
Vol 19 (30) ◽  
pp. 5327-5332 ◽  
Author(s):  
Luca Esposito ◽  
Paola Indovina ◽  
Flora Magnotti ◽  
Daniele Conti ◽  
Antonio Giordano

2020 ◽  
Vol 15 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Hongyu Tao ◽  
Ling Zuo ◽  
Huanli Xu ◽  
Cong Li ◽  
Gan Qiao ◽  
...  

Background: In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. Objective: This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. Methods: Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. Results: More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.


2021 ◽  
Vol 9 (12) ◽  
pp. 4338-4343
Author(s):  
Hong-Yi Shen ◽  
Lei He ◽  
Ping-Ping Shi ◽  
Qiong Ye

Two organic–inorganic hybrid materials exhibit functional regulation by introducing homochiral cations and different reagent ratios.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Viktorija Juric ◽  
Lance Hudson ◽  
Joanna Fay ◽  
Cathy E. Richards ◽  
Hanne Jahns ◽  
...  

AbstractActivation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yiqing Cai ◽  
Rui Feng ◽  
Tiange Lu ◽  
Xiaomin Chen ◽  
Xiangxiang Zhou ◽  
...  

AbstractN6-methyladenosine (m6A) is a prevalent internal RNA modification in higher eukaryotic cells. As the pivotal m6A regulator, RNA methyltransferase-like 3 (METTL3) is responsible for methyl group transfer in the progression of m6A modification. This epigenetic regulation contributes to the structure and functional regulation of RNA and further promotes tumorigenesis and tumor progression. Accumulating evidence has illustrated the pivotal roles of METTL3 in a variety of human cancers. Here, we systemically summarize the interaction between METTL3 and RNAs, and illustrate the multiple functions of METTL3 in human cancer. METLL3 is aberrantly expressed in a variety of tumors. Elevation of METTL3 is usually associated with rapid progression and poor prognosis of tumors. On the other hand, METTL3 may also function as a tumor suppressor in several cancers. Based on the tumor-promoting effect of METTL3, the possibility of applying METTL3 inhibitors is further discussed, which is expected to provide novel insights into antitumor therapy.


1971 ◽  
Vol 246 (12) ◽  
pp. 3879-3884 ◽  
Author(s):  
Leo M. Sreebny ◽  
Dorthea A. Johnson ◽  
Murray R. Robinovitch

Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Claire Brun ◽  
Jean-Marie Exbrayat ◽  
Michel Raquet

Reproduction in vertebrates is controlled by the hypothalamo-pituitary-gonadal axis, and both the sex steroid and pituitary hormones play a pivotal role in the regulation of the physiology of the oviduct and events occurring within the oviduct. Their hormonal actions are mediated through interaction with specific receptors. Our aim was to locate α and β estrogen receptors, progesterone receptors, gonadotropin and prolactin receptors in the tissues of the oviduct of Typhlonectes compressicauda (Amphibia, Gymnophiona), in order to study the correlation between the morphological changes of the genital tract and the ovarian cycle. Immunohistochemical methods were used. We observed that sex steroids and pituitary hormones were involved in the morpho-functional regulation of oviduct, and that their cellular detection was dependent on the period of the reproductive cycle.


Sign in / Sign up

Export Citation Format

Share Document