Intracellular Signaling in Classical and New Tight Junction Functions

2001 ◽  
pp. 385-412
2006 ◽  
Vol 17 (3) ◽  
pp. 1322-1330 ◽  
Author(s):  
Anna Tsapara ◽  
Karl Matter ◽  
Maria S. Balda

The tight junction adaptor protein ZO-1 regulates intracellular signaling and cell proliferation. Its Src homology 3 (SH3) domain is required for the regulation of proliferation and binds to the Y-box transcription factor ZO-1-associated nucleic acid binding protein (ZONAB). Binding of ZO-1 to ZONAB results in cytoplasmic sequestration and hence inhibition of ZONAB's transcriptional activity. Here, we identify a new binding partner of the SH3 domain that modulates ZO-1–ZONAB signaling. Expression screening of a cDNA library with a fusion protein containing the SH3 domain yielded a cDNA coding for Apg-2, a member of the heat-shock protein 110 (Hsp 110) subfamily of Hsp70 heat-shock proteins, which is overexpressed in carcinomas. Regulated depletion of Apg-2 in Madin-Darby canine kidney cells inhibits G1/S phase progression. Apg-2 coimmunoprecipitates with ZO-1 and partially localizes to intercellular junctions. Junctional recruitment and coimmunoprecipitation with ZO-1 are stimulated by heat shock. Apg-2 competes with ZONAB for binding to the SH3 domain in vitro and regulates ZONAB's transcriptional activity in reporter gene assays. Our data hence support a model in which Apg-2 regulates ZONAB function by competing for binding to the SH3 domain of ZO-1 and suggest that Apg-2 functions as a regulator of ZO-1–ZONAB signaling in epithelial cells in response to cellular stress.


2019 ◽  
Vol 316 (2) ◽  
pp. G229-G246 ◽  
Author(s):  
Paramita Sarkar ◽  
Tultul Saha ◽  
Irshad Ali Sheikh ◽  
Subhra Chakraborty ◽  
Joydeep Aoun ◽  
...  

Whether zinc (Zn2+) regulates barrier functions by modulating tight-junction (TJ) proteins when pathogens such as Shigella alter epithelial permeability is still unresolved. We investigated the potential benefits of Zn2+ in restoring impaired barrier function in vivo in Shigella-infected mouse tissue and in vitro in T84 cell monolayers. Basolateral Shigella infection triggered a time-dependent decrease in transepithelial resistance followed by an increase in paracellular permeability of FITC-labeled dextran and altered ion selectivity. This led to ion and water loss into the intestinal lumen. Immunofluorescence studies revealed redistribution of claudin-2 and -4 to an intracellular location and accumulation of these proteins in the cytoplasm following infection. Zn2+ ameliorated this perturbed barrier by redistribution of claudin-2 and -4 back to the plasma membrane and by modulating the phosphorylation state of TJ proteins t hough extracellular signal-regulated kinase (ERK)1/2 dependency. Zn2+ prevents elevation of IL-6 and IL-8. Mice challenged with Shigella showed that oral Zn2+supplementation diminished diverse pathophysiological symptoms of shigellosis. Claudin-2 and -4 were susceptible to Shigella infection, resulting in altered barrier function and increased levels of IL-6 and IL-8. Zn2+ supplementation ameliorated this barrier dysfunction, and the inflammatory response involving ERK-mediated change of phosphorylation status for claudin-2 and -4. Thus, Zn2+ may have potential therapeutic value in inflammatory diarrhea and shigellosis. NEW & NOTEWORTHY Our study addresses whether Zn2+ could be an alternative strategy to reduce Shigella-induced inflammatory response and epithelial barrier dysfunction. We have defined a mechanism in terms of intracellular signaling pathways and tight-junction protein expression by Zn2+. Claudin-2 and -4 are susceptible to Shigella infection, whereas in the presence of Zn2+ they are resistant to infection-related barrier dysfunction involving ERK-mediated change of phosphorylation status of claudins.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


2001 ◽  
Vol 120 (5) ◽  
pp. A110-A110
Author(s):  
A HOPKINS ◽  
S WALS ◽  
P VERKADE ◽  
P BOQUET ◽  
A NUSRAT

Sign in / Sign up

Export Citation Format

Share Document