Importance of microstructural understanding for durable and sustainable concrete

Author(s):  
Karen Scrivener
Keyword(s):  
2014 ◽  
Vol 2 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Damre Shraddha ◽  
Firake Hitali ◽  
Dode Pradeep ◽  
Shrikant Varpe

2019 ◽  
Vol 303 ◽  
pp. 05001
Author(s):  
Mónica Bedoya ◽  
Federico Rivera ◽  
María Rico ◽  
David Vélez ◽  
Andrés Urrego ◽  
...  

It is clear that construction and demolition wastes (CDW) are constantly increasing throughout the world and these wastes can be used effectively to minimize the consumption of natural resources in the manufacture of more sustainable concrete. The CDW occupy an important segment of world waste production and its generation reached approximately 3 billion tons in 2012 in 40 countries [1]. Although this topic has been studied in the world, it is still valid for the reuse of waste that is constantly increasing, and although in many countries there are already examples of its use this type of concrete in Colombia and in the Medellìn city lacks applications. This project proposes the application of a sustainable concrete made with CDW and coal ash in the Medellín city for its implementation in the construction of urban furniture. A university community diagnosis of the needs in terms of furnishing was made. With the design reached, a modular chair was proposed to enable spaces within the university. The mechanical characteristics of the concrete and the design of the chair are evaluated and a simulation is done through finite elements to evaluate the viability of the proposed concrete, finding that with these properties is possible to manufacture durable and sustainable furniture that serves as an example for the application of sustainable materials


2021 ◽  
Vol 11 (5) ◽  
pp. 2133
Author(s):  
Laura Landa-Ruiz ◽  
Miguel Angel Baltazar-Zamora ◽  
Juan Bosch ◽  
Jacob Ress ◽  
Griselda Santiago-Hurtado ◽  
...  

This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures.


Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 1898-1910
Author(s):  
Samira Mahmud ◽  
Tanvir Manzur ◽  
Samina Samrose ◽  
Tafannum Torsha

Author(s):  
Kanta Naga Rajesh ◽  
Ponnada Markandeya Raju ◽  
Kapileswar Mishra ◽  
Pavan Kumar Madisetti

2021 ◽  
Vol 13 (11) ◽  
pp. 6277
Author(s):  
Ibrahim Sharaky ◽  
Usama Issa ◽  
Mamdooh Alwetaishi ◽  
Ahmed Abdelhafiz ◽  
Amal Shamseldin ◽  
...  

In this study, the recycled concrete aggregates and powder (RCA and RCP) prepared from basaltic concrete waste were used to replace the natural aggregate (NA) and cement, respectively. The NA (coarse and fine) was replaced by the recycled aggregates with five percentages (0%, 20%, 40%, 60% and 80%). Consequently, the cement was replaced by the RCP with four percentages (0%, 5%, 10% and 20%). Cubes with 100 mm edge length were prepared for all tests. The compressive and tensile strengths (fcu and ftu) and water absorption (WA) were investigated for all mixes at different ages. Partial substitution of NA with recycled aggregate reduced the compressive strength with different percentages depending on the type and source of recycled aggregate. After 28 days, the maximum reduction in fcu value was 9.8% and 9.4% for mixtures with coarse RCA and fine RCA (FRCA), respectively. After 56 days, the mixes with 40% FRCA reached almost the same fcu value as the control mix (M0, 99.5%). Consequently, the compressive strengths of the mixes with 10% RCA at 28 and 56 days were 99.3 and 95.2%, respectively, compared to those of M0. The mixes integrated FRCA and RCP showed higher tensile strengths than the M0 at 56 d with a very small reduction at 28 d (max = 3.4%). Moreover, the fcu and ftu values increased for the late test ages, while the WA decreased.


Sign in / Sign up

Export Citation Format

Share Document