The Influence of Wind upon 3-Dimensional Trajectory of Golf Ball under Various Initial Conditions

Author(s):  
T Naruo ◽  
T Mizota
1992 ◽  
Vol 152 ◽  
pp. 145-152 ◽  
Author(s):  
R. Dvorak

In this article we present a numerical study of the motion of asteroids in the 2:1 and 3:1 resonance with Jupiter. We integrated the equations of motion of the elliptic restricted 3-body problem for a great number of initial conditions within this 2 resonances for a time interval of 104 periods and for special cases even longer (which corresponds in the the Sun-Jupiter system to time intervals up to 106 years). We present our results in the form of 3-dimensional diagrams (initial a versus initial e, and in the z-axes the highest value of the eccentricity during the whole integration time). In the 3:1 resonance an eccentricity higher than 0.3 can lead to a close approach to Mars and hence to an escape from the resonance. Asteroids in the 2:1 resonance with Jupiter with eccentricities higher than 0.5 suffer from possible close approaches to Jupiter itself and then again this leads in general to an escape from the resonance. In both resonances we found possible regions of escape (chaotic regions), but only for initial eccentricities e > 0.15. The comparison with recent results show quite a good agreement for the structure of the 3:1 resonance. For motions in the 2:1 resonance our numeric results are in contradiction to others: high eccentric orbits are also found which may lead to escapes and consequently to a depletion of this resonant regions.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Hongli Fu ◽  
Jinkun Yang ◽  
Wei Li ◽  
Xinrong Wu ◽  
Guijun Han ◽  
...  

This study addresses how to maintain oceanic mixing along potential density surface in ocean data assimilation (ODA). It is well known that the oceanic mixing across the potential density surface is much weaker than that along the potential density surface. However, traditional ODA schemes allow the mixing across the potential density surface and thus may result in extra assimilation errors. Here, a new ODA scheme that uses potential density gradient information of the model background to rescale observational adjustment is designed to improve the quality of assimilation. The new scheme has been tested using a regional ocean model within a multiscale 3-dimensional variational framework. Results show that the new scheme effectively prevents the excessive unphysical projection of observational information in the direction across potential density surface and thus improves assimilation quality greatly. Forecast experiments also show that the new scheme significantly improves the model forecast skills through providing more dynamically consistent initial conditions


1999 ◽  
Vol 121 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Mont Hubbard ◽  
Tait Smith

A previous study of a golf ball rolling on the rim of a cup neglected the spin of the ball about a line perpendicular to the plane of contact. The capture process is studied here by numerically solving the equations for rolling without slipping on the rim. The boundary in the velocity-impact parameter space separating roll-in and roll-out trajectories corresponds to initial conditions for a set of near guasi-equilibrium trajectories. Stability of the equilibrium trajectories is investigated using symbolic linearization of perturbation solutions from them. Although the locally unstable equilibrium trajectories themselves are not attainable from the two-space of pure rolling initial conditions, the boundary is nevertheless a “barrier” in that it corresponds to long contact times and large roll around angles.


1994 ◽  
Vol 05 (02) ◽  
pp. 181-187 ◽  
Author(s):  
Edward Seidel ◽  
Wai-Mo Suen

The present status of numerical relativity is reviewed. There are five closely interconnected aspects of numerical relativity: (1) Formulation. The general covariant Einstein equations are reformulated in a way suitable for numerical study by separating the 4-dimensional spacetime into a 3-dimensional space evolving in time. (2) Techniques. A set of tools is developed for determining gauge choices, setting boundary and initial conditions, handling spacetime singularities, etc. As required by the special physical and mathematical properties of general relativity, such techniques are indispensable for the numerical evolutions of spacetime. (3) Coding. The optimal use of parallel processing is crucial for many problems in numerical relativity, due to the intrinsic complexity of the theory. (4) Visualization. Numerical relativity is about the evolutions of 3-dimensional geometric structures. There are special demands on visualization. (5) Interpretation and Understanding. The integration of numerical data in relativity into a consistent physical picture is complicated by gauge and coordinate degrees of freedoms and other difficulties. We give a brief overview of the progress made in these areas.


1998 ◽  
Vol 543 ◽  
Author(s):  
Panos Argyrakis ◽  
Jaewook Ahn ◽  
Anna Lin ◽  
Raoul Kopelman

We report on the diffusion-limited A + B reaction in highly anisotropic spaces. In addition to the highly non-classical behavior of the density of reactants predicted for isotropic spaces, we observe a dimensional crossover in A + B → 0 reactions due to the geometrical compactness of the tubular 2- and 3-dimensional spaces (baguettelike structures). For slabs, we find the crossover time Tc. = Wα, which scales as , where a, b and β are given by the earlier and the late time inverse density scalings of ρ− 1 ˜-, ta and ρ−1 - tbWβ, respectively. We also obtain a critical width W, below which the chemical reaction progresses without traversing a 2- or 3-dimensional Ovchinnikov-Zeldovich reaction regime. We find that there exist different hierarchies of dimensionally forced crossovers, depending on the initial conditions and geometric restrictions. Kinetic phase diagrams are employed and exponents are given for the A + B elementary reactions in various euclidean geometries. Monte-Carlo simulations illustrate some of the kinetic hierarchies.


2020 ◽  
Author(s):  
Mathew Owens

<p>Near-Earth solar wind conditions, including disturbances generated by coronal mass ejections (CMEs), are routinely forecast using 3-dimensional, numerical magnetohydrodynamic (MHD) models of the heliosphere. The resulting forecast errors are largely the result of uncertainty in the near-Sun boundary conditions, rather than heliospheric model physics or numerics. Thus ensembles of heliospheric model runs with perturbed initial conditions are used to estimate forecast uncertainty. MHD heliospheric models are relatively cheap in computational terms, requiring tens of minutes to an hour to simulate CME propagation from the Sun to Earth. Thus such ensembles can be run operationally. However, ensemble size is typically limited to ~10<sup>1</sup>-10<sup>2</sup>, which may be inadequate to sample the relevant high-dimensional parameter space. Here, we describe a simplified solar wind model that can estimate CME arrival time in approximately 0.01 seconds on a modest desktop computer and thus enables significantly larger ensembles. It is a 1-dimensional, incompressible, hydrodynamic model, which has previously been used for the steady-state solar wind, but is here used in time-dependent form. This approach is shown to adequately emulate the MHD solutions to the same boundary conditions for both steady-state solar wind and CME-like disturbances. We suggest it could serve as a “surrogate” model for the full 3-dimensional MHD models. For example, ensembles of ~10<sup>5</sup>-10<sup>6</sup> members can be used to identify regions of parameter space for more detailed investigation by the MHD models. Similarly, the simplicity of the model means it can be rewritten as an adjoint model, enabling variational data assimilation with MHD models without the need to alter their code. Model code is available as an Open Source download in the Python language.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Daba Meshesha Gusu ◽  
Dechasa Wegi ◽  
Girma Gemechu ◽  
Diriba Gemechu

In this paper, we propose a novel reduced differential transform method (RDTM) to compute analytical and semianalytical approximate solutions of fractional order Airy’s ordinary differential equations and fractional order Airy’s and Airy’s type partial differential equations subjected to certain initial conditions. The performance of the proposed method was analyzed and compared with a convergent series solution form with easily computable coefficients. The behavior of approximated series solutions at different values of fractional order α and its modeling in 2-dimensional and 3-dimensional spaces are compared with exact solutions using MATLAB graphical method analysis. Moreover, the physical and geometrical interpretations of the computed graphs are given in detail within 2- and 3-dimensional spaces. Accordingly, the obtained approximate solutions of fractional order Airy’s ordinary differential equations and fractional order Airy’s and Airy’s type partial differential equations subjected to certain initial conditions exactly fit with exact solutions. Hence, the proposed method reveals reliability, effectiveness, efficiency, and strengthening of computed mathematical results in order to easily solve fractional order Airy’s type differential equations.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Sign in / Sign up

Export Citation Format

Share Document