Effect of forward swept leading edge on a transonic axial compressor rotor stall margin

2010 ◽  
pp. 27-30
Author(s):  
HaoGuang Zhang ◽  
Feng Tan ◽  
YanHui Wu ◽  
WuLi Chu ◽  
Wei Wang ◽  
...  

For compressor blade tip stall, one effective way of extending stable operating range is with the application of circumferential grooved casing treatment and its validity was proved by a lot of experimental and numerical investigations. The emphases of most circumferential grooved investigations are focused on the influence of groove depth and groove number on compressor stability, and there is few investigations dealt with the center offset degree of circumferential grooves casing treatment. Hence, an axial compressor rotor with casing treatment (CT) was investigated with experimental and numerical methods to explore the effect of center offset degree on compressor stability and performance. In the work reported here, The center offset degree is defined as the ratio of the central difference between rotor tip axial chord and CT to the axial chord length of rotor tip. When the center of CT is located within the upstream direction of the center of rotor tip axial chord, the value of center offset degree is positive. The experimental and numerical results show that stall margin improvement gained with CT is reduced as the value of center offset degree varies from 0 to 0.33 or −0.33, and the CT with −0.33 center offset degree achieves the lowest value of stall margin improvement at 53% and 73% design rotational speed. The detailed analysis of the flow-field in compressor tip indicates that there is not positive effect made by grooves on leading edge of rotor blade tip when the value of center offset degree is −0.33. As the mass flow of compressor reduces further, tip clearance leakage flow results in the outlet blockage due to the absence of the positive action of grooves near blade tip tail when the value of center offset degree is 0.33. Blockage does not appear in rotor tip passage owing to utilizing the function of all grooves with CT of 0 center offset degree.


Author(s):  
S. Subbaramu ◽  
Quamber H. Nagpurwala ◽  
A. T. Sriram

This paper deals with the numerical investigations on the effect of trailing edge crenulation on the performance of a transonic axial compressor rotor. Crenulation is broadly considered as a series of small notches or slots at the edge of a thin object, like a plate. Incorporating such notches at the trailing edge of a compressor cascade has shown beneficial effect in terms of reduction in total pressure loss due to enhanced mixing in the wake region. These notches act as vortex generators to produce counter rotating vortices, which increase intermixing between the free stream flow and the low momentum wake fluid. Considering the positive effects of crenulation in a cascade, it was hypothesized that the same technique would work in a rotating compressor to enhance its performance and stall margin. However, the present CFD simulations on a transonic compressor rotor have given mixed results. Whereas the peak total pressure ratio in the presence of trailing edge crenulation reduced, the stall margin improved by 2.97% compared to the rotor with straight edge blades. The vortex generation at the crenulated trailing edge was not as strong as reported in case of linear compressor cascade, but it was able to influence the flow field in the rotor tip region so as to energize the low momentum end-wall flow in the aft part of the blade passage. This beneficial effect delayed flow separation and allowed the mass flow rate to be reduced to still lower levels resulting in improved stall margin. The reduction in pressure ratio with crenulation was surprising and might be due to increased mixing losses downstream of the blade.


Author(s):  
Haixin Chen ◽  
Xudong Huang ◽  
Ke Shi ◽  
Song Fu ◽  
Matthew A. Bennington ◽  
...  

Numerical investigations were conducted to predict the performance of a transonic axial compressor rotor with circumferential groove casing treatment. The Notre Dame Transonic Axial Compressor (ND-TAC) was simulated by Tsinghua University with an in-house CFD code (NSAWET) for this work. Experimental data from the ND-TAC were used to define the geometry, boundary conditions and data sampling method for the numerical simulation. These efforts, combined with several unique simulation approaches, such as non-matched grid boundary technology to treat the periodic boundaries and interfaces between groove grids and the passage grid, resulted in good agreement between the numerical and experimental results for overall compressor performance and radial profiles of exit total pressure. Efforts were made to study blade level flow mechanisms to determine how the casing treatment impacts the compressor’s stall margin and performance. The flow structures in the passage, the tip gap and the grooves as well as their mutual interactions were plotted and analyzed. The flow and momentum transport across the tip gap in the smooth wall and the casing treatment configurations were quantitatively compared.


2021 ◽  
Vol 5 ◽  
pp. 79-89
Author(s):  
Ahmad Fikri Mustaffa ◽  
Vasudevan Kanjirakkad

The stall margin of tip-critical axial compressors can be improved by using circumferential casing grooves. From previous studies, in the literature, the stall margin improvement due to the casing grooves can be attributed to the reduction of the near casing blockage. The pressure rise across the compressor as the compressor is throttled intensifies the tip leakage flow. This results in a stronger tip leakage vortex that is thought to be the main source of the blockage. In this paper, the near casing blockage due to the tip region aerodynamics in a low-speed axial compressor rotor is numerically studied and quantified using a mass flow-based blockage parameter. The peak blockage location at the last stable operating point for a rotor with smooth casing is found to be at about 10% of the tip chord aft of the tip leading edge. Based on this information, an optimised single casing groove design that minimises the peak blockage is found using a surrogate-based optimisation approach. The implementation of the optimised groove is shown to produce a stall margin improvement of about 5%.


Author(s):  
Yanling Li ◽  
Abdulnaser Sayma

Gas turbine axial compressor blades may encounter damage during service for various reasons. Debris from casing or foreign objects may impact blades causing damage near the rotor’s tip. This may result in deterioration of performance and reduction in the surge margin. Ability to assess the effect of damaged blades on the compressor performance and stability is important at both the design stage and in service. The damage to compressor blades breaks the cyclic symmetry of the compressor assembly. Thus computations have to be performed using the whole annulus. Moreover, if rotating stall or surge occurs, the downstream boundary conditions are not known and simulations become difficult. This paper presents an unsteady CFD analysis of compressor performance with tip curl damage. Tip curl damage typically occurs when rotor blades hit a loose casing liner. The computations were performed up to the stall boundary, predicting rotating stall patterns. The aim is to assess the effect of blade damage on stall margin and provide better understanding of the flow behaviour during rotating stall. Computations for the undamaged rotor are also performed for comparison. A transonic axial compressor rotor is used for the time-accurate numerical unsteady flow simulations, with a variable choked nozzle downstream simulating an experimental throttle. One damaged blade was introduced in the rotor assembly and computations were performed at 60% of the design rotational speed. It was found that there is no significant effect on the compressor stall margin due to one damaged blade despite the differences in rotating stall patterns between the undamaged and damaged assemblies.


Author(s):  
Yuyun Li ◽  
Zhiheng Wang ◽  
Guang Xi

The Inlet distortion, which may lead to the stability reduction or structure failure, is often non-ignorable in an axial compressor. In the paper, the three-dimensional unsteady numerical simulations on the flow in NASA rotor 67 are carried out to investigate the effect of inlet distortion on the performance and flow structure in a transonic axial compressor rotor. A sinusoidal circumferential total pressure distortion with eleven periods per revolution is adopted to study the interaction between the transonic rotor and inlet circumferential distortion. Concerning the computational expense, the flow in two rotor blade passages is calculated. Various intensities of the total pressure distortion are discussed, and the detailed flow structures under different rotating speeds near the peak efficiency condition are analyzed. It is found that the distortion has a positive effect on the flow near the hub. Even though there is no apparent decrease in the rotor efficiency or total pressure ratio, an obvious periodic loading exists over the whole blade. The blade loadings are concentrated in the region near the leading edge of the rotor blade or regions affected by the oscillating shocks near the pressure side. The time averaged location of shock structure changes little with the distortion, and the motion of shocks and the interactions between the shock and the boundary layer make a great contribution to the instability of the blade structure.


Author(s):  
A. F. Mustaffa ◽  
V. Kanjirakkad

Abstract The stability limit of a tip-stalling axial compressor is sensitive to the magnitude of the near casing blockage. In transonic compressors, the presence of the passage shock could be a major cause for the blockage. Identification and elimination of this blockage could be key to improving the stability limit of the compressor. In this paper, using numerical simulation, the near casing blockage within the transonic rotor, NASA Rotor 37, is quantified using a blockage parameter. For a smooth casing, the blockage at conditions near stall has been found to be maximum at about 20% of the tip axial chord downstream of the tip leading edge. This maximum blockage location is found to be consistent with the location of the passage shock-tip leakage vortex interaction. A datum single casing groove design that minimises the peak blockage is found through an optimisation approach. The stall margin improvement of the datum casing groove is about 0.6% with negligible efficiency penalty. Furthermore, the location of the casing groove is varied upstream and downstream of the datum location. It is shown that the stability limit of the compressor is best improved when the blockage is reduced upstream of the peak blockage location. The paper also discusses the prospects of a multi-groove casing configuration.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Vijaykumar Jain ◽  
Quamber H. Nagpurwala ◽  
Abdul Nassar

Aspiration in an axial compressor is normally regarded as sucking out the low momentum boundary layer from blade suction surface, thus lowering the chances of flow separation and consequently that of stall under off-design operation. However, the suction mass flow does not take part in useful work and leads to loss of engine power output. This paper deals with a new concept of natural aspiration to energize blade suction surface boundary layer by injecting some fluid from pressure to suction side through a part span slot on the blade. The energized boundary layer has lesser tendency to separate, thus enhancing stall margin. Numerical simulations were carried out to study the effect of aspiration slot location and geometry on the performance and stall margin of a transonic axial compressor rotor. The computational results without aspiration slot were in fair agreement with the published experimental data. The modified rotor, with part span aspiration, showed ~3.2% improvement in stall margin at design rotational speed. The pressure ratio and efficiency of the aspirated rotor dropped by ~1.42% and ~2.0%, respectively, whereas the structural analysis did not indicate any adverse effect on the blade stress distribution in the presence of aspiration slot.


2021 ◽  
pp. 1-22
Author(s):  
Ahmad Fikri Bin Mustaffa ◽  
Vasudevan Kanjirakkad

Abstract The stability limit of a tip-stalling axial compressor is sensitive to the magnitude of the near casing blockage. In transonic compressors, the presence of the passage shock could be a major cause for the blockage. Identification and elimination of this blockage could be key to improving the stability limit of the compressor. In this paper, using numerical simulation, the near casing blockage within the transonic rotor, NASA Rotor 37, is quantified using a blockage parameter. For a smooth casing, the blockage at conditions near stall has been found to be maximum at about 20% of the tip axial chord downstream of the tip leading edge. This maximum blockage location is found to be consistent with the location of the passage shock-tip leakage vortex interaction. A datum single casing groove design that minimises the peak blockage is found through an optimisation approach. The stall margin improvement of the datum casing groove is about 0.6% with negligible efficiency penalty. Furthermore, the location of the casing groove is varied upstream and downstream of the datum location. It is shown that the stability limit of the compressor is best improved when the blockage is reduced upstream of the peak blockage location. The paper also discusses the prospects of a multi-groove casing configuration.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Haixin Chen ◽  
Xudong Huang ◽  
Ke Shi ◽  
Song Fu ◽  
Mark Ross ◽  
...  

Numerical investigations were conducted to predict the performance of a transonic axial compressor rotor with circumferential groove casing treatment. The Notre Dame Transonic Axial Compressor (ND-TAC) was simulated at Tsinghua University with an in-house computational fluid dynamics (CFD) code (NSAWET) for this work. Experimental data from the ND-TAC were used to define the geometry, boundary conditions, and data sampling method for the numerical simulation. These efforts, combined with several unique simulation approaches, such as nonmatched grid boundary technology to treat the periodic boundaries and interfaces between groove grids and the passage grid, resulted in good agreement between the numerical and experimental results for overall compressor performance and radial profiles of exit total pressure. Efforts were made to study blade level flow mechanisms to determine how the casing treatment impacts the compressor's stall margin and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analyzed. The flow and momentum transport across the tip gap in the smooth wall and the casing treatment configurations were quantitatively compared.


Sign in / Sign up

Export Citation Format

Share Document