Rapid Tooling & Manufacturing

Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1318
Author(s):  
Mariusz Deja ◽  
Dawid Zieliński ◽  
Aini Zuhra Abdul Kadir ◽  
Siti Nur Humaira

High requirements imposed by the competitive industrial environment determine the development directions of applied manufacturing methods. 3D printing technology, also known as additive manufacturing (AM), currently being one of the most dynamically developing production methods, is increasingly used in many different areas of industry. Nowadays, apart from the possibility of making prototypes of future products, AM is also used to produce fully functional machine parts, which is known as Rapid Manufacturing and also Rapid Tooling. Rapid Manufacturing refers to the ability of the software automation to rapidly accelerate the manufacturing process, while Rapid Tooling means that a tool is involved in order to accelerate the process. Abrasive processes are widely used in many industries, especially for machining hard and brittle materials such as advanced ceramics. This paper presents a review on advances and trends in contemporary abrasive machining related to the application of innovative 3D printed abrasive tools. Examples of abrasive tools made with the use of currently leading AM methods and their impact on the obtained machining results were indicated. The analyzed research works indicate the great potential and usefulness of the new constructions of the abrasive tools made by incremental technologies. Furthermore, the potential and limitations of currently used 3D printed abrasive tools, as well as the directions of their further development are indicated.


Sadhana ◽  
2019 ◽  
Vol 44 (10) ◽  
Author(s):  
PIYUSH BEDI ◽  
RUPINDER SINGH ◽  
I P S AHUJA
Keyword(s):  

Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


2007 ◽  
Vol 39 (9-10) ◽  
pp. 898-904 ◽  
Author(s):  
E. Pessard ◽  
P. Mognol ◽  
J. Y. Hascoët ◽  
C. Gerometta

Author(s):  
Azhar Equbal ◽  
Anoop Kumar Sood ◽  
Mohammad Shamim

<p>To solve the tool-making bottleneck, it is fundamental to integrate rapid manufacturing methodologies for rapid tooling, which reduces the lead-time to manufacture the tools while improving their quality. Rapid tooling (RT) is a progression of rapid prototyping (RP). RT is the art of producing tooling directly from CAD models of the part. RT technology plays a major role in increasing the pace of tooling development. This paper describes the role of RT according to the current market situation. An ample review of examples of rapid tooling indicates a new trend of tooling practice. This trend in manufacturing based on rapid prototyping and rapid tooling has already had a dynamic impact on the engineering environment.</p>


Sign in / Sign up

Export Citation Format

Share Document