Interpretation of pull-out tests on instrumented rock bolts by means of 3D numerical modelling

Author(s):  
R Giot ◽  
C Auvray ◽  
A Giraud ◽  
B Gatmiri ◽  
A Noiret
Author(s):  
Eren Komurlu ◽  
Aysegul Durmus Demir ◽  
Atila Gurhan Celik

Within this study, new bolt heads were designed to be able to expand in drill holes as the load applied on the bolt shank increases. The heads of newly designed rock bolts include a conic part and split rings encircling them. To determine load bearing capacities of new rock bolts with varying angles of the conic parts and expansion properties, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. In addition to the experimental studies, numerical modelling analyses were performed to better understand the support properties of newly designed rock bolts. Because of a negative Poisson’s ratio effect supplied by the head part expansion with the tension of the shank, new bolt heads are suggested to be defined as auxetic. According to the results of this study, the new head designs significantly improve the load bearing and energy absorption capacities of grouted rock bolts.


Author(s):  
Eren Komurlu ◽  
Serhat Demir

Change in the load bearing capacity of the split set type friction rock bolts with variations of bolt lengths was investigated within this study. To determine a relation between the load bearing capacity and bolt length parameters, different friction bolt models with various lengths were analyzed with a numerical modelling study. In addition, a series of pull-out tests was carried out to evaluate the load bearing capacities of the split set type friction rock bolts with different lengths. The load bearing capacity of the bolts was found to decreasingly increase with the increase in the bolt length. As an outcome of this study, a relation between the load bearing capacity and rock bolt length parameters is suggested in accordance with the results obtained from both numerical and experimental studies.


2019 ◽  
Vol 38 (2) ◽  
pp. 1389-1407 ◽  
Author(s):  
Nicholas Vlachopoulos ◽  
Daniel Cruz ◽  
Bryan Stanley Anthony Tatone ◽  
Andrea Lisjak ◽  
Omid K. Mahabadi ◽  
...  

Author(s):  
Are Håvard Høien ◽  
Charlie C. Li ◽  
Ning Zhang

AbstractRock bolts are one of the main measures used to reinforce unstable blocks in a rock mass. The embedment length of fully grouted bolts in the stable and competent rock stratum behind the unstable rock blocks is an important parameter in determining overall bolt length. It is required that the bolt section in the stable stratum must be longer than the critical embedment length to ensure the bolt will not slip when loaded. Several series of pull tests were carried out on fully grouted rebar bolts to evaluate the pull-out mechanics of the bolts. Bolt specimens with different embedment lengths and water/cement ratios were installed in either a concrete block of one cubic meter or in steel cylinders. Load displacement was recorded during testing. For some of the bolts loaded beyond the yield load, permanent plastic steel deformation was also recorded. Based on the test results, three types of failure mechanisms were identified, corresponding to three loading conditions: (1) pull-out below the yield strength of the bolt steel; (2) pull-out between the yield and ultimate loads, that is, during strain hardening of the steel; and (3) steel failure at the ultimate load. For failure mechanisms 2 and 3, it was found that the critical embedment length of the bolt included three components: an elastic deformation length, a plastic deformation length and a completely debonded length due to the formation of a failure cone at the borehole collar.


Sign in / Sign up

Export Citation Format

Share Document