Dynamic three-point bending tests on aluminium foam filled steel tubes

2012 ◽  
pp. 517-524
Author(s):  
G Rathnaweera ◽  
D Ruan ◽  
V Nagaraj ◽  
Y Durandet
2014 ◽  
Vol 566 ◽  
pp. 305-309
Author(s):  
Fauziah Mat ◽  
K.A. Ismail ◽  
Masniezam Ahmad ◽  
Yaacob Sazali ◽  
Inayatullah Othman

This paper presents the crushing behaviour of empty and foam-filled conical tubes under axial dynamic loading. A nonlinear finite element (FE) model was developed and validated against experiments. The validated model was subsequently used to assess the beneficial of foam filling with regards to the variation in filler densities and tube materials. The results obtained were further analyzed and compared with straight tubes. We aim to evaluate the critical effective point for different density of fillers in foam-filled tubes based on specific energy absorption (SEA) value. The SEA value was highest for foam-filled conical aluminium tube with aluminium foam filler, followed by straight aluminium tube, straight carbon steel tube and conical carbon steel tube. Moreover, the initial peak force was found lower in aluminium tubes than carbon steel tubes and lower in conical tubes than that in straight tubes. The combination of conical aluminium tube and aluminium foam filler successfully convey the beneficial of foam filling and thus signify that proper combination and selection of tube and filler is vital in assessing the effectiveness of foam-filled tubes.


2014 ◽  
Vol 620 ◽  
pp. 413-416 ◽  
Author(s):  
Yang An ◽  
Chun Hui Yang ◽  
Peter Hodgson

In the study, the strengthening effect of aluminium foam in thin-walled aluminium tubes subject to bending load in investigated experimentally and numerically. Bending tests are conducted on foam filler, hollow tube and foam-filled tube. The finite element method is used as well to get deeper insight into the crush failure modes via focusing on the influence from wall thickness of the tube. The obtained information is useful to optimally design foam-filled tubes as energy absorbing devices in automotive engineering. The optimisation results can be implemented to find an optimum foam-filled tube that absorbs the same energy as the optimal hollow tube but with much less weight.


2020 ◽  
Vol 837 ◽  
pp. 41-45
Author(s):  
Shuai Sun ◽  
Kai Hua Liu

In order to determine the evolution features of deformation twins for TA2 commercial pure titanium (cp-TA2), the TA2 samples were bent under different bending angles in three-point bending tests via a universal testing machine. The electron backscatter diffraction (EBSD) technique was applied to identify the grain boundaries (GBs) and twin boundaries (TBs) in the bending areas. The results reveal that the type of deformation area would effect the evolution of different deformation twins. It is inferred that the state of stress would promote the multiplication of the same type of deformation twins.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3522
Author(s):  
Marta Caballero-Jorna ◽  
Marta Roig-Flores ◽  
Pedro Serna

The use of synthetic fibers in fiber-reinforced concretes (FRCs) is often avoided due to the mistrust of lower performance at changing temperatures. This work examines the effect of moderate temperatures on the flexural strengths of FRCs. Two types of polypropylene fibers were tested, and one steel fiber was employed as a reference. Three-point bending tests were carried out following an adapted methodology based on the standard EN 14651. This adapted procedure included an insulation system that allowed the assessment of FRC flexural behavior after being exposed for two months at temperatures of 5, 20, 35 and 50 °C. In addition, the interaction of temperature with a pre-cracked state was also analyzed. To do this, several specimens were pre-cracked to 0.5 mm after 28 days and conditioned in their respective temperature until testing. The findings suggest that this range of moderate temperatures did not degrade the behavior of FRCs to a great extent since the analysis of variances showed that temperature is not always a significant factor; however, it did have an influence on the pre-cracked specimens at 35 and 50 °C.


2012 ◽  
Vol 509 ◽  
pp. 209-214
Author(s):  
Shao Peng Wu ◽  
Pan Pan ◽  
Ming Yu Chen

With the widespread application of asphalt mixture, current demand from transportation managers for construction and maintenance of their pavement network consumes large numbers of aggregates. If agencies excessively favor to some certain kinds of excellent aggregates, the cost of construction could be considerably expensive. The major objective of this study is to determine the feasibility of utilizing dacite in asphalt mixtures. By means of Marshall, freeze-thaw, rutting and three-point bending tests, the performances of dacite and basalt asphalt mixture are compared. The results of the testing illustrate that dacite asphalt mixture is more susceptible to gradation and asphalt content than basalt asphalt mixture. Meanwhile it is showed that the performances of dacite asphalt mixture can be improved greatly with the involvement of additives including active mineral powder and cement. Furthermore, it is validated that dacite can be used as alternative aggregate in asphalt mixture.


2006 ◽  
Vol 445-448 ◽  
pp. 422-426 ◽  
Author(s):  
T. Sato ◽  
K. Katagiri ◽  
T. Hokari ◽  
Y. Hatakeyama ◽  
A. Murakami ◽  
...  

2011 ◽  
Vol 4 (4) ◽  
pp. 523-534 ◽  
Author(s):  
R. Jungmann ◽  
M.E. Szabo ◽  
G. Schitter ◽  
Raymond Yue-Sing Tang ◽  
D. Vashishth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document