Molecular Aspects of Crop Response to Abiotic Stress with Emphasis on Drought and Salinity

2013 ◽  
pp. 336-356 ◽  

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 591
Author(s):  
Luca Ambrosino ◽  
Chiara Colantuono ◽  
Gianfranco Diretto ◽  
Alessia Fiore ◽  
Maria Luisa Chiusano

Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes. We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and still open challenges in abiotic stress research based on -omics technologies.



2014 ◽  
Vol 33 (3) ◽  
pp. 388-400 ◽  
Author(s):  
Rohini Garg ◽  
Annapurna Bhattacharjee ◽  
Mukesh Jain


Author(s):  
Sivaji Mathivanan

Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. Among abiotic stress, drought, salinity, high temperature, and cold are major adverse environmental factors that limit the crop production and productivity by inhibiting the genetic potential of the plant. So, it leads to complete change of morphological, physiological, biochemical, and molecular behavior of the plants and modifies regular metabolism of life, thereby adversely affecting plant productivity. Major effects of the drought, salinity, extreme temperatures, and cold stress are often interconnected and form similar cellular damage. To adopt plants with various abiotic stresses, plants can initiate a number of molecular, cellular, and physiological changes in its system. Sensors are molecules that perceive the initial stress signal from the outside of the plant system and initiate a signaling cascade to transmit the signal and activate nuclear transcription factors to induce the expression of specific sets of genes. Understanding this molecular and physiological basis of plant responses produced because of abiotic stress will help in molecular and modern breeding applications toward developing improved stress-tolerant crops. This review presents an overview and implications of physiological and molecular aspects of main abiotic stress, i.e., drought, heat, salt, and cold. Potential strategies to improve abiotic tolerance in crops are discussed.





1995 ◽  
Vol 74 (01) ◽  
pp. 001-006 ◽  
Author(s):  
Earl W Davie


1977 ◽  
Vol 38 (03) ◽  
pp. 0724-0727 ◽  
Author(s):  
H Graeff ◽  
R Hafter ◽  
R von Hugo


2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  


2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody





1998 ◽  
Vol 12 (3) ◽  
pp. 205-222 ◽  
Author(s):  
William M. Brown ◽  
Simon P. Aiken


Sign in / Sign up

Export Citation Format

Share Document