Investigation on forming process of copper alloys via Selective Laser Melting

Author(s):  
D Zhang ◽  
Z Liu ◽  
C Chua
Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1337 ◽  
Author(s):  
Zhonghua Li ◽  
Zezhou Kuai ◽  
Peikang Bai ◽  
Yunfei Nie ◽  
Guang Fu ◽  
...  

The multi-beam selective laser forming system is a new type of powder bed laser forming equipment that is different from single-laser selective laser melting (SLM) printers. It is a new generation for a metal powder material moulding process that has high efficiency, large size and batch manufacturing. It is a new development of a powder bed laser forming process trend. In this paper, the microstructure and tensile properties of both the multi-laser-formed AlSi10Mg isolated and overlap areas are studied to ensure that the parts can achieve perfect seamless splicing and to identify whether the parts in different regions have the same performance. It was discovered that as the number of scans increases, the depth and width of the melt pool and microscopic grain structure in the overlap zone increase. The preferential crystallite growth orientation reaches the (200) plane. A small amount of smooth surface appeared at the fracture of the overlap area of the two scans, the dimples were reduced and the structure became larger, resulting in a decrease in tensile properties.


2015 ◽  
Vol 42 (5) ◽  
pp. 0503001
Author(s):  
刘威 Liu Wei ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe ◽  
蒋立异 Jiang Liyi

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Peng Yang ◽  
Dingyong He ◽  
Zengjie Wang ◽  
Zhen Tan ◽  
Hanguang Fu ◽  
...  

Purpose In this research, the highly dense bulk Cu-5Sn alloy specimens were fabricated using selective laser melting (SLM). This study aims to establish the relationship between laser power (LP), scanning speed (SS) and hatch space (HS) with surface roughness (Ra) and density. To obtain Cu-5Sn alloy formed parts with high strength and low surface roughness. The microstructure and mechanical properties of SLMed Cu-5Sn were investigated. Design/methodology/approach The relative density (RD) was optimized using the response surface method (RSM) and analysis of variance. First, the Ra of SLMed formed specimens was studied to optimize the forming process parameters with a good surface. Then, the dense specimens were studied by ANOVA and the RSM to obtain dense specimens for mechanical property analysis. Findings Dense specimens were obtained by RSM and ANOVA. The tensile properties were compared with the casted specimens. The yield and ultimate strengths increased from 71 and 131 MPa for the cast specimens to 334 and 489 MPa for the SLMed specimens, respectively. The ductility increased significantly from 11% to 23%, due to the refined microstructure of the SLMed specimens, as well as the formation of many twin crystals. Originality/value The Ra, RD and mechanical properties of SLM specimens Cu-5Sn were systematically studied, and the influencing factors were analyzed together. This study provides a theoretical and practical example to improve the surface quality and RD.


2011 ◽  
Vol 38 (6) ◽  
pp. 0603024
Author(s):  
孟广斌 Meng Guangbin ◽  
顾冬冬 Gu Dongdong ◽  
李闯 Li Chuang ◽  
沈以赴 Shen Yifu ◽  
李玉芳 Li Yufang

2021 ◽  
Vol 2097 (1) ◽  
pp. 012016
Author(s):  
Wentong Wang ◽  
Linfeng Tang ◽  
Congyan Chen ◽  
Yu Li ◽  
Tao Zhou

Abstract Selective laser melting (SLM), as an emerging technology in additive manufacturing, often has various defects in the forming process. To ensure the consistency and stability of the parts forming quality, the effects of two typical technological parameters, laser power and scanning speed, on the temperature of molten pool are investigated in this paper. Firstly, the temperature field of Ti-6Al-4V is simulated theoretically via ANSYS software, and the effects of two typical technological parameters on the temperature field are studied. Then, in the experiment, using the designed radiation monitoring device and Ti-6Al-4V powder as forming material, the influence of these two typical factors on the state of molten pool is studied. The simulation and experimental results show that the temperature of molten pool shows positive correlation with the laser power and negative correlation with the scanning speed. This will provide a certain reference value for upgrading and optimizing SLM equipment.


2018 ◽  
Vol 941 ◽  
pp. 1570-1573
Author(s):  
Ken Imai ◽  
Toshi Taka Ikeshoji ◽  
Kazuya Nakamura ◽  
Motonori Nishida ◽  
Yuji Sugitani ◽  
...  

Additive manufacturing (AM) is a prominent technology in the industrial fields such as aerospace, medical, automotive and so on. Especially, selective laser melting (SLM) process is available to create three-dimensional complicated structures of various alloys such as stainless steel, titanium alloy, aluminium alloy, nickel-based superalloy and so on. And also, copper and copper alloys are used as a material for products with complicated shape, electrical components, and a heat exchanger because of having the high electrical conductivity and the high thermal conductivity. It is known that copper alloys show a good shape memory behaviour by adding Al, Ni and Zn. Especially, Cu-Al-Ni alloy shows a good shape memory properties at high temperature. However, it is difficult to fabricate high-density Cu-Al-Ni alloy by the SLM process. This is mainly because Cu-Al-Ni alloy has high elastic anisotropy and brittleness in polycrystalline state. In this research, the optimum fabrication condition of Cu-Al-Ni alloy by SLM process was investigated. The optimum laser power and scan speed were able to be found by evaluating the surface morphology, density and microstructure of the as-build specimens.The maximum density of the as-built specimen was 99.47%.


Sign in / Sign up

Export Citation Format

Share Document