Application of Modifi ed Atmosphere Packaging for Extension of Shelf-Life of Food Commodities

2014 ◽  
pp. 397-410
Keyword(s):  
1991 ◽  
Vol 54 (1) ◽  
pp. 58-70 ◽  
Author(s):  
J. M. FARBER

Modified-atmosphere packaged (MAP) foods have become increasingly more common in North America, as food manufacturers have attempted to meet consumer demands for fresh, refrigerated foods with extended shelf life. Although much information exists in the general area of MAP technology, research on the microbiological safety of these foods is still lacking. The great vulnerability of MAP foods from a safety standpoint is that with many modified atmospheres containing moderate to high levels of carbon dioxide, the aerobic spoilage organisms which usually warn consumers of spoilage are inhibited, while the growth of pathogens may be allowed or even stimulated. In the past, the major concerns have been the anaerobic pathogens, especially the psychrotrophic, nonproteolytic clostridia. However, because of the emergence of psychrotrophic pathogens such as Listeria monocytogenes, Aeromonas hydrophila, and Yersinia enterocolitica, new safety issues have been raised. This stems mainly from the fact that the extended shelf life of many MAP products may allow extra time for these pathogens to reach dangerously high levels in a food. This review focuses on the effects of MAP on the growth and survival of foodborne pathogens. Considered are the major psychrotrophic pathogens, the mesophiles such as the salmonellae and staphylococci, as well as the microaerophilic Campylobacter jejuni. The use of MAP in various food commodities such as beef, chicken, fish, and sandwiches is also discussed. Examples of various foods currently being packaged under MAP in North America are given, along with the specific atmospheres employed for the various food groups. Major safety concerns that still need to be addressed include the potential for growth and toxin production of Clostridium botulinum type E in MAP fish products, the growth of L. monocytogenes and A. hydrophila under modified atmospheres in various food commodities, and the enhanced survival of anaerobic spores and C. jejuni under certain gas atmospheres. Additional research with MAP foods is needed to ensure the microbiological safety of the numerous MAP products that will be available to the consumer in the next decade and beyond.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 366 ◽  
Author(s):  
Maria-Ioana Socaciu ◽  
Cristina Semeniuc ◽  
Dan Vodnar

Fresh fish is extensively consumed and is one of the most-traded food commodities in the world. Conventional preservation technologies include vacuum and modified atmosphere packaging, but they are costly since requires capital investment. In the last decade, research has been directed towards the development of antimicrobial packaging systems, as an economical alternative to these. This paper outlines antimicrobial films and coatings applied so far on fresh fish, their efficacy against targeted microorganism/group and effects on chemical quality of the product. Findings show that edible films/coatings incorporated with different active agents applied to fresh fish are able to inhibit the microbial growth and decrease the rate of fish nutrients degradation, thus preventing the formation of chemical metabolites; a shelf-life extension of 6 to 13 days was obtained for fish fillets, depending on the species on which the active packaging materials were applied. The manufacturing use of these formulations could lead to a significant reduction in fish waste, consequently, a diminution of economic losses for fish traders and retailers. Therefore, their industrial production and commercialization could be an exploitable sector by the packaging industry.


2007 ◽  
Author(s):  
Darren Braun
Keyword(s):  

Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
NG Chorianopoulos ◽  
PN Skandamis ◽  
GJE Nychas ◽  
SA Haroutounian

2018 ◽  
Vol 34 (2) ◽  
pp. 173-183 ◽  
Author(s):  
Arpit V. Joshi ◽  
◽  
Nilanjana S. Baraiya ◽  
Pinal B. Vyas ◽  
T. V. Ramana Rao ◽  
...  

2020 ◽  
pp. 140-153

To investigate the effectiveness of adding lemon peels and pulp extracts on some quality properties and shelf-life of the sheep longisimussdorsi muscle during refrigerated storage at 4±1°C for 0, 4, and 8 days for this purpose am meat trim of visible fat and connective tissue, they cut in small cubes. The meat samples divide into four equal proportions and mix with different concentrations of lemon peel and pulp extract according to the following formulations: Control; T1 1%; T2 2% and T3 3% of lemon peel and pulp extract, by applied immersion method. The results showed acceptable results of moisture content, Water-holding capacity cooking loss, thiobarbituric acid, met-myoglobin, myoglobin, and sensory traits of the samples treated with lemon peel in comparison to the control group. The phiso-chemical traits changed during the storage periods but the meat sample treated with lemon extract was more stable than control groups. These results suggested that using lemon peels and pulp extracts to maintain physio-chemical properties of ram meat and extend shelf-life during refrigerated storage, which may have implications of meat processors.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Aulia Alfi

Virgin Coconut Oil (VCO) adalah bahan alami yang memiliki sifat antimikroba (antivirus, antibakteri, dan antijamur). Sehingga VCO dapat memberikan efek pengawet pada bahan makanan, salah satunya adalah roti manis. Penelitian ini dilakukan untuk mengevaluasi pengaruh VCO terhadap karakteristik (fisik dan kimia) dan umur simpan roti manis. Roti manis dianalisis secara fisik (tekstur dan porositas) dan kimia (kadar air, kadar abu, kadar lemak, kadar protein, dan kandungan karbohidrat), dan analisis umur simpan dengan FFA, uji organoleptik dan jamur setiap dua hari selama delapan hari penyimpanan di suhu ruang. Variasi perlakuan roti manis adalah dari rasio konsentrasi VCO: margarin: mentega, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). Hasil penelitian menunjukkan bahwa VCO tidak memiliki pengaruh yang signifikan terhadap karakteristik fisik dan karakteristik kimia roti manis. Namun, VCO berpengaruh signifikan terhadap kadar air roti manis yang dihasilkan, roti manis K memiliki kadar air tertinggi (22,36%) dan berbeda dengan sampel roti manis lainnya. VCO secara efektif menghambat pertumbuhan jamur di roti manis pada konsentrasi 8%, 12%, dan 16%. Roti manis K dan A memiliki masa simpan 4 hari, sedangkan roti manis B, C, dan D memiliki masa simpan 6 hari.Kata kunci: VCO, roti manis, karakteristik, umur simpanABSTRACTVirgin Coconut Oil (VCO) is a natural ingredient that has antimicrobial (antiviral, antibacterial, and antifungal) properties. So that VCO can provide a preservative effect on food ingredients, one of which is sweet bread. This research was conducted to evaluate the effect of VCO on characteristics (physical and chemical) and shelf life of sweet bread. Sweet bread was analyzed physically (texture and porosity) and chemistry (moisture content, ash content, fat content, protein content, and carbohydrate content), and shelf life analysis with FFA, organoleptic and mold tests every two days for eight days of storage at ambient temperature. Treatment variations of sweet breads is from the ratio of the concentration of VCO: margarine: butter, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). The results showed that VCO did not have a significant effect on the physical characteristics and chemical characteristics of sweet bread. However, the VCO has a significant effect on the water content of the sweet bread produced, sweet bread K has the highest moisture content (22,36%) and it is different from other sweet bread samples. VCO effectively inhibits the growth of sweet bread mold at concentrations of 8%, 12%, and 16%. K and A sweet bread has a shelf life of 4 days, while sweet breads B, C, and D have a shelf life of 6 days.Keywords: VCO, sweet bread, characteristics, shelf life


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
PIYUSH MISHRA ◽  
DEVENDRA KUMAR BHATT

Pasta was prepared by incorporation of Ocimum sanctum (Basil) for better textural and sensory properties. The pasta was incorporated with the leaf extract of Ocimum sanctum at different concentrations of control, 5, 10, and 15.The natural antioxidants present in the O. sanctum leaf powder that was incorporated in the fruit leather showed extended shelf-life over three months when compared with control, without any added preservative at ambient temperature. Also the nutritional stability of the product was studied under two flexible packages of polypropylene and polyester out of that the products packed in polypropylene showed better storage stability .


Sign in / Sign up

Export Citation Format

Share Document