Seismic performance of the Self-Centering Confined Masonry Wall with external steel dampers

2016 ◽  
pp. 271-276
Author(s):  
Xiao-Bin Hu ◽  
Wen-Xia Li ◽  
Kun Liu ◽  
Lu Chen
2021 ◽  
pp. 875529302098801
Author(s):  
Xin Wang ◽  
Qun Xie ◽  
Zhenli Wu ◽  
Fanyang Bu ◽  
Fei Wang

An experimental study was conducted to investigate the seismic performance of masonry walls strengthened using hybrid fiber-reinforced reactive powder concrete (HyFRRPC) as a coating. The proposed reinforcement technique was employed to improve the overall strength and structural integrity of the confined masonry wall. In order to guarantee the composite action between the masonry substrate and the coating material, material tests were conducted to achieve an optimal mixture for the HyFRRPC. Then, six full-scaled confined masonry specimens strengthened by HyFRRPCs with varied strengthening configurations were tested under in-plane quasi-static horizontal loading. The test and analysis results indicated that the proposed HyFRRPC-strengthening technique can effectively improve the lateral carrying capacity, displacement ductility, and energy dissipation capacity of masonry walls, and provide an optimal reinforcement. Finally, a simplified analytical model was also proposed for practical application.


2017 ◽  
Vol 20 (11) ◽  
pp. 1632-1643 ◽  
Author(s):  
Masoud Amouzadeh Tabrizi ◽  
Masoud Soltani

This article focuses on the experimental and analytical investigations of masonry walls surrounded by tie-elements under in-plane loads. The experimental results of an unconfined and a confined masonry wall, tested under reversed cyclic lateral loads, are presented. For numerical study, a micro-modeling strategy, using smeared-crack-based approach, is adopted. In order to validate the numerical approach, experimental test results and data obtained from the literature are used, and through a systematic parametric study, the influence of adjoining walls and number of tie-columns on the seismic behavior of confined masonry panels is numerically assessed and a simple but rational method for predicting the nonlinear behavior of these structures is proposed.


2018 ◽  
Vol 180 ◽  
pp. 77-91 ◽  
Author(s):  
Jin Zhang ◽  
Hao Ma ◽  
Cheng Li ◽  
Qingfeng Xu ◽  
Weibin Li

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Syed Azmat Ali Shah ◽  
Junaid Shah Khan ◽  
Syed Muhammad Ali ◽  
Khan Shahzada ◽  
Waqar Ahmad ◽  
...  

Half-scaled reinforced concrete frame of two storeys and two bays with unreinforced masonry (URM) infill walls was subjected to base excitation on a shake table for seismic performance evaluation. Considering the high seismic hazard Zone IV of Pakistan, reinforcement detailing in the RC frame is provided according to special moment resisting frames (SMFRs) requirement of Building Code of Pakistan Seismic-Provisions (BCP SP-2007). The reinforced concrete frame was infilled with in-plane solid masonry walls in its interior frame, in-plane masonry walls with door and window openings in the exterior frame, out-of-plane solid masonry wall, and masonry wall with door and window openings in its interior frame. For seismic capacity qualification test, the structure was subjected to three runs of unidirectional base excitation with increasing intensity. For system identification, ambient-free vibration tests were performed at different stages of experiment. Seismic performance of brick masonry infill walls in reinforced concrete frame structures was evaluated. During the shake table test, performance of URM infill walls was satisfactory until design ground acceleration was 0.40g with a global drift of 0.23%. The test was continued till 1.24g of base acceleration. This paper presents key findings from the shake table tests, including the qualitative damage observations and quantitative force-displacement, and hysteretic response of the test specimen at different levels of excitation. Experimental results of this test will serve as a benchmark for validation of numerical and analytical models.


2012 ◽  
Vol 226-228 ◽  
pp. 1098-1101
Author(s):  
Cheng Wang ◽  
Yong Kun Luo ◽  
Xiao Long Xu

With the rapid development of economy and the civil engineering discipline, the seismic performance of existing masonry wall can't satisfy the codes and regional seismic requirements. As a result, strengthening the earthquake resistance of it is put on the agenda. Using large-scale finite element software-abaqus, this paper analyzes different methods of strengthening masonry walls by constructional columns. Under the premise of the cross area of the columns used to reinforce is identical, it shows that the wall strengthened by bilateral constructional columns has a better seismic performance than by unilateral constructional column. The ductility coefficient of the former increases 49.4% than the original masonry, while the latter increases 26.3%. The bilateral constructional column could significantly improve the integrity and ductility of the masonry wall, so does the seismic performance. It has engineering sense for the strengthening work.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 385-406 ◽  
Author(s):  
Maximiliano Astroza ◽  
Ofelia Moroni ◽  
Svetlana Brzev ◽  
Jennifer Tanner

Engineered masonry, namely reinforced and confined masonry, has been widely used for housing construction in Chile over the last few decades. Most one- and two-story single-family masonry dwellings did not experience any damage due to the 27 February 2010 Maule earthquake, with the exception of a few dwellings of pre-1970 vintage, which suffered moderate damage. A similar statement can be made for three- and four-story confined masonry buildings: a large majority of buildings remained undamaged. However, several reinforced and partially confined three- and four-story masonry buildings suffered extensive damage, and two three-story partially confined buildings collapsed. The key damage patterns and the causes of damage are discussed in the paper. The extent of damage observed in the field was correlated with calculated vulnerability indices, and relevant recommendations were made related to the design and construction practices.


2013 ◽  
Vol 353-356 ◽  
pp. 1826-1831
Author(s):  
Tie Jun Qu ◽  
Yan Ping Wang ◽  
Xian Yun Wang

A two-story masonry housing model was made in this paper. According to Intensity 7, adjusted Northridge record was selected to be the ground motion input in the pseudo-dynamic test. Pseudo-dynamic test and pseudo-static test were carried out to investigate the seismic behavior of the model structure. The time-history curves of the acceleration, velocity, displacement and restoring force of the structural response were obtained besides the time-history curves of the measuring points of the structure. Also the steel strain of the tie-columns and the hysteresis loops of the structure were obtained. The result shows multi-story confined masonry structures possess superior seismic performance if coordinated with the provision specified in the current compulsory design code and it can continue to use after appropriate dressing under the rarely earthquake.


2021 ◽  
Vol 11 (24) ◽  
pp. 11736
Author(s):  
Ho Choi ◽  
Kang-Seok Lee

The authors developed two types of block systems, consisting only of main and key blocks, without joint mortar, to improve the in- and out-of-plane seismic performances and enhance the workability. Two types of block systems have different key block shapes. One is the peanuts shape, and the other is the H shape. The proposed block systems have a half-height difference between the main and key blocks, to significantly improve seismic performance in in- and out-of-plane directions, compared to typical masonry wall with joint mortar. In this study, in order to evaluate the out-of-plane seismic performance of the proposed block systems, two types of block walls are experimentally investigated, including the typical block wall. Firstly, the shaking table tests are carried out to investigate the fundamental out-of-plane behaviors of three specimens. Next, four-point bending tests are planned to evaluate the out-of-plane seismic performance, since all specimens do not occur the out-of-plane collapse in the shaking table tests from the preliminary calculation. In this paper, the development of predominant period, profiles of acceleration and displacement, and maximum tensile strength of each specimen are discussed in detail. As a result, the maximum loads of the proposed block walls were about three to four times that of the typical block wall. This result means that the proposed block system has significantly improved seismic performance in the out-of-plane direction.


Sign in / Sign up

Export Citation Format

Share Document