scholarly journals Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

2021 ◽  
Vol 60 (1) ◽  
pp. 33-50
Author(s):  
Wenxin Fan ◽  
Yi Liu ◽  
Adrian Chappell ◽  
Li Dong ◽  
Rongrong Xu ◽  
...  

AbstractGlobal reanalysis products are important tools across disciplines to study past meteorological changes and are especially useful for wind energy resource evaluations. Studies of observed wind speed show that land surface wind speed declined globally since the 1960s (known as global terrestrial stilling) but reversed with a turning point around 2010. Whether the declining trend and the turning point have been captured by reanalysis products remains unknown so far. To fill this research gap, a systematic assessment of climatological winds and trends in five reanalysis products (ERA5, ERA-Interim, MERRA-2, JRA-55, and CFSv2) was conducted by comparing gridcell time series of 10-m wind speed with observational data from 1439 in situ meteorological stations for the period 1989–2018. Overall, ERA5 is the closest to the observations according to the evaluation of climatological winds. However, substantial discrepancies were found between observations and simulated wind speeds. No reanalysis product showed similar change to that of the global observations, although some showed regional agreement. This discrepancy between observed and reanalysis land surface wind speed indicates the need for prudence when using reanalysis products for the evaluation and prediction of winds. The possible reasons for the inconsistent wind speed trends between reanalysis products and observations are analyzed. The results show that wind energy production should select different products for different regions to minimize the discrepancy with observations.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5425
Author(s):  
Justė Jankevičienė ◽  
Arvydas Kanapickas

Developing wind energy in Lithuania is one of the most important ways to achieve green energy goals. Observational data show that the decline in wind speeds in the region may pose challenges for wind energy development. This study analyzed the long-term variation of the observed 2006–2020 and projected 2006–2100 near-surface wind speed at the height of 10 m over Lithuanian territory using data of three models included in the Coupled Model Intercomparison Project phase 5 (CMIP5). A slight decrease in wind speeds was found in the whole territory of Lithuania for the projected wind speed data of three global circulation models for the scenarios RCP2.6, RCP4.5, and RCP8.5. It was found that the most favorable scenario for wind energy production is RCP2.6, and the most unfavorable is the RCP4.5 scenario under which the decrease in wind speed may reach 12%. At the Baltic Sea coastal region, the decline was smaller than in the country’s inner regions by the end of the century. The highest reduction in speed is characteristic of the most severe RCP8.5 scenario. Although the analysis of wind speeds projected by global circulation models (GCM) confirms the downward trends in wind speeds found in the observational data, the projected changes in wind speeds are too small to significantly impact the development of wind farms in Lithuania.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sujay Kulkarni ◽  
Huei-Ping Huang

The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5) archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.


2018 ◽  
Vol 35 (1) ◽  
pp. 183-205 ◽  
Author(s):  
Etor E. Lucio-Eceiza ◽  
J. Fidel González-Rouco ◽  
Jorge Navarro ◽  
Hugo Beltrami ◽  
Jorge Conte

AbstractA quality control (QC) process has been developed and applied to an observational database of surface wind speed and wind direction in northeastern North America. The database combines data from three datasets of different initial quality, including a total of 526 land stations and buoys distributed over the provinces of eastern Canada and five adjacent northeastern U.S. states. The data span from 1953 to 2010. The first part of the QC deals with data management issues and is developed in a companion paper. Part II, presented herein, is focused on the detection of measurement errors and deals with low-variability errors, like the occurrence of unrealistically long calms, and high-variability problems, like rapid changes in wind speed; some types of biases in wind speed and wind direction are also considered. About 0.5% (0.16%) of wind speed (wind direction) records have been flagged. Additionally, 15.87% (1.73%) of wind speed (wind direction) data have been corrected. The most pervasive error type in terms of affected sites and erased data corresponds to unrealistic low wind speeds (89% of sites affected with 0.35% records removed). The amount of detected and corrected/removed records in Part II (~9%) is approximately two orders of magnitude higher than that of Part I. Both management and measurement errors are shown to have a discernible impact on the statistics of the database.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


2020 ◽  
Vol 12 (2) ◽  
pp. 155-164
Author(s):  
He Fang ◽  
William Perrie ◽  
Gaofeng Fan ◽  
Tao Xie ◽  
Jingsong Yang

Sign in / Sign up

Export Citation Format

Share Document