Biocatalysts: Immobilized Enzymes and Immobilized Cells

The development of immobilized enzyme and cell technology is summarized. Industrial processes for sucrose inversion, penicillin deacylation and glucose isomerization using immobilized enzymes are described. An alternative process for glucose isomerization using immobilized cells, and some other industrial applications of immobilized cells are indicated. Recent developments in immobilized enzyme and cell technology are assessed and the relative merits of the different biochemical catalyst forms are considered.


2004 ◽  
Vol 9 (2) ◽  
pp. 139-144 ◽  
Author(s):  
J. Kulys

A model of biosensor containing three immobilized enzymes utilizing consecutive substrate conversion in the chain was developed. The modeling was performed at an internal diffusion limitation and a steadystate condition. The calculations showed that significant response of biosensors was produced if diffusion modules were larger than 1 for all enzyme reactions. Due to diffusion limitation the apparent stability of biosensor response increased many times in comparison to stability of the most labile enzyme of the chain.


2019 ◽  
Vol 25 (24) ◽  
pp. 2661-2676 ◽  
Author(s):  
Sundaresan Bhavaniramya ◽  
Ramar Vanajothi ◽  
Selvaraju Vishnupriya ◽  
Kumpati Premkumar ◽  
Mohammad S. Al-Aboody ◽  
...  

Enzymes exhibit a great catalytic activity for several physiological processes. Utilization of immobilized enzymes has a great potential in several food industries due to their excellent functional properties, simple processing and cost effectiveness during the past decades. Though they have several applications, they still exhibit some challenges. To overcome the challenges, nanoparticles with their unique physicochemical properties act as very attractive carriers for enzyme immobilization. The enzyme immobilization method is not only widely used in the food industry but is also a component methodology in the pharmaceutical industry. Compared to the free enzymes, immobilized forms are more robust and resistant to environmental changes. In this method, the mobility of enzymes is artificially restricted to changing their structure and properties. Due to their sensitive nature, the classical immobilization methods are still limited as a result of the reduction of enzyme activity. In order to improve the enzyme activity and their properties, nanomaterials are used as a carrier for enzyme immobilization. Recently, much attention has been directed towards the research on the potentiality of the immobilized enzymes in the food industry. Hence, the present review emphasizes the different types of immobilization methods that is presently used in the food industry and other applications. Various types of nanomaterials such as nanofibers, nanoflowers and magnetic nanoparticles are significantly used as a support material in the immobilization methods. However, several numbers of immobilized enzymes are used in the food industries to improve the processing methods which not only reduce the production cost but also the effluents from the industry.


1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


Sign in / Sign up

Export Citation Format

Share Document