Dissolution and Translational Modeling Strategies Toward Establishing an In Vitro-In Vivo Link—a Workshop Summary Report

2019 ◽  
Vol 21 (2) ◽  
Author(s):  
Tycho Heimbach ◽  
Sandra Suarez-Sharp ◽  
Maziar Kakhi ◽  
Nico Holmstock ◽  
Andrés Olivares-Morales ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5583
Author(s):  
Guilherme Ribeiro Romualdo ◽  
Kaat Leroy ◽  
Cícero Júlio Silva Costa ◽  
Gabriel Bacil Prata ◽  
Bart Vanderborght ◽  
...  

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.


Author(s):  
Xavier J.H. Pepin ◽  
Jennifer Dressman ◽  
Neil Parrott ◽  
Poonam Delvadia ◽  
Amitava Mitra ◽  
...  

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Sandra Suarez-Sharp ◽  
Andreas Abend ◽  
Thomas Hoffelder ◽  
David Leblond ◽  
Poonam Delvadia ◽  
...  

2018 ◽  
Vol 20 (3) ◽  
Author(s):  
Andreas Abend ◽  
Tycho Heimbach ◽  
Michael Cohen ◽  
Filippos Kesisoglou ◽  
Xavier Pepin ◽  
...  

Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Conly L. Rieder ◽  
S. Bowser ◽  
R. Nowogrodzki ◽  
K. Ross ◽  
G. Sluder

Eggs have long been a favorite material for studying the mechanism of karyokinesis in-vivo and in-vitro. They can be obtained in great numbers and, when fertilized, divide synchronously over many cell cycles. However, they are not considered to be a practical system for ultrastructural studies on the mitotic apparatus (MA) for several reasons, the most obvious of which is that sectioning them is a formidable task: over 1000 ultra-thin sections need to be cut from a single 80-100 μm diameter egg and of these sections only a small percentage will contain the area or structure of interest. Thus it is difficult and time consuming to obtain reliable ultrastructural data concerning the MA of eggs; and when it is obtained it is necessarily based on a small sample size.We have recently developed a procedure which will facilitate many studies concerned with the ultrastructure of the MA in eggs. It is based on the availability of biological HVEM's and on the observation that 0.25 μm thick serial sections can be screened at high resolution for content (after mounting on slot grids and staining with uranyl and lead) by phase contrast light microscopy (LM; Figs 1-2).


Sign in / Sign up

Export Citation Format

Share Document