Gain of function of Malate Dehydrogenase 2 (MDH2) and familial hyperglycemia

Author(s):  
Prapaporn Jungtrakoon Thamtarana ◽  
Antonella Marucci ◽  
Luca Pannone ◽  
Amélie Bonnefond ◽  
Serena Pezzilli ◽  
...  

Abstract Objective We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. Methods Existing Whole Exome Sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the US and Italy. Functional studies were carried out in vitro (transfected MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of two variants in the Malate Dehydrogenase 2 (MDH2) gene linked with hyperglycemia in two of the families. Results A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in one family from the US. An infrequent MDH2 missense variant (p.Val160Met) also showed disease co-segregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio - a change known to affect insulin signaling and secretion. Stable expression of human wild type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. Conclusions Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.

Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4171-4180 ◽  
Author(s):  
Takashi Nakakura ◽  
Chihiro Mogi ◽  
Masayuki Tobo ◽  
Hideaki Tomura ◽  
Koichi Sato ◽  
...  

Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown as a receptor for protons. In the present study, we aimed to know whether OGR1 plays a role in insulin secretion and, if so, the manner in which it does. To this end, we created OGR1-deficient mice and examined insulin secretion activity in vivo and in vitro. OGR1 deficiency reduced insulin secretion induced by glucose administered ip, although it was not associated with glucose intolerance in vivo. Increased insulin sensitivity and reduced plasma glucagon level may explain, in part, the unusual normal glucose tolerance. In vitro islet experiments revealed that glucose-stimulated insulin secretion was dependent on extracellular pH and sensitive to OGR1; insulin secretion at pH 7.4 to 7.0, but not 8.0, was significantly suppressed by OGR1 deficiency and inhibition of Gq/11 proteins. Insulin secretion induced by KCl and tolbutamide was also significantly inhibited, whereas that induced by several insulin secretagogues, including vasopressin, a glucagon-like peptide 1 receptor agonist, and forskolin, was not suppressed by OGR1 deficiency. The inhibition of insulin secretion was associated with the reduction of glucose-induced increase in intracellular Ca2+ concentration. In conclusion, the OGR1/Gq/11 protein pathway is activated by extracellular protons existing under the physiological extracellular pH of 7.4 and further stimulated by acidification, resulting in the enhancement of insulin secretion in response to high glucose concentrations and KCl.


2006 ◽  
Vol 291 (2) ◽  
pp. E404-E411 ◽  
Author(s):  
Paul J. Rozance ◽  
Sean W. Limesand ◽  
William W. Hay

We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 ± 0.05 ng/ml leucine; 0.99 ± 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 ± 0.18 ng/ml) and acute (0.27 ± 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 ± 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.


Diabetologia ◽  
2020 ◽  
Vol 63 (7) ◽  
pp. 1368-1381 ◽  
Author(s):  
Eleni Georgiadou ◽  
Elizabeth Haythorne ◽  
Matthew T. Dickerson ◽  
Livia Lopez-Noriega ◽  
Timothy J. Pullen ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ao Jiao ◽  
Feng Li ◽  
Chengshuo Zhang ◽  
Wu Lv ◽  
Baomin Chen ◽  
...  

Cholinergic neurons can functionally support pancreatic islets in controlling blood sugar levels. However, in islet transplantation, the level of cholinergic reinnervation is significantly lower compared to orthotopic pancreatic islets. This abnormal reinnervation affects the survival and function of islet grafts. In this study, the cholinergic reinnervation of beta cells was simulated by 2D and 3D coculture of INS-1 and NG108-15 cells. In 2D culture conditions, 20 mM glucose induced a 1.24-fold increase (p<0.0001) in insulin secretion from the coculture group, while in the 3D culture condition, a 1.78-fold increase (p<0.0001) in insulin secretion from heterotypic pseudoislet group was observed. Glucose-stimulated insulin secretion (GSIS) from 2D INS-1 cells showed minimal changes when compared to 3D structures. E-cadherin expressed in INS-1 and NG108-15 cells was the key adhesion molecule for the formation of heterotypic pseudoislets. NG108-15 cells hardly affected the proliferation of INS-1 cells in vitro. Heterotypic pseudoislet transplantation recipient mice reverted to normoglycemic levels faster and had a greater blood glucose clearance compared to INS-1 pseudoislet recipient mice. In conclusion, cholinergic cells can promote insulin-secreting cells to function better in vitro and in vivo and E-cadherin plays an important role in the formation of heterotypic pseudoislets.


2012 ◽  
Vol 26 (10) ◽  
pp. 1757-1772 ◽  
Author(s):  
Norman Simpson ◽  
Antonella Maffei ◽  
Matthew Freeby ◽  
Steven Burroughs ◽  
Zachary Freyberg ◽  
...  

Abstract We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity.


Diabetes ◽  
2007 ◽  
Vol 56 (12) ◽  
pp. 2927-2937 ◽  
Author(s):  
A. I. Oprescu ◽  
G. Bikopoulos ◽  
A. Naassan ◽  
E. M. Allister ◽  
C. Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document