scholarly journals Minireview: Cyclin D1: Normal and Abnormal Functions

Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5439-5447 ◽  
Author(s):  
Maofu Fu ◽  
Chenguang Wang ◽  
Zhiping Li ◽  
Toshiyuki Sakamaki ◽  
Richard G. Pestell

Abstract Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the retinoblastoma protein and promotes progression through the G1-S phase of the cell cycle. Amplification or overexpression of cyclin D1 plays pivotal roles in the development of a subset of human cancers including parathyroid adenoma, breast cancer, colon cancer, lymphoma, melanoma, and prostate cancer. Of the three D-type cyclins, each of which binds cyclin-dependent kinase (CDK), it is cyclin D1 overexpression that is predominantly associated with human tumorigenesis and cellular metastases. In recent years accumulating evidence suggests that in addition to its original description as a CDK-dependent regulator of the cell cycle, cyclin D1 also conveys cell cycle or CDK-independent functions. Cyclin D1 associates with, and regulates activity of, transcription factors, coactivators and corepressors that govern histone acetylation and chromatin remodeling proteins. The recent findings that cyclin D1 regulates cellular metabolism, fat cell differentiation and cellular migration have refocused attention on novel functions of cyclin D1 and their possible role in tumorigenesis. In this review, both the classic and novel functions of cyclin D1 are discussed with emphasis on the CDK-independent functions of cyclin D1.

2003 ◽  
Vol 178 (2) ◽  
pp. 319-329 ◽  
Author(s):  
K Takahashi ◽  
M Ohmichi ◽  
M Yoshida ◽  
K Hisamoto ◽  
S Mabuchi ◽  
...  

The proliferation of vascular smooth muscle cells (VSMC) is a crucial pathophysiological process in the development of atherosclerosis. Although estrogen is known to inhibit the proliferation of VSMC, the mechanism responsible for this effect remains to be elucidated. In addition, the effect of raloxifene on VSMC remains unknown. We have shown here that 17beta-estradiol (E(2)) and raloxifene significantly inhibited the platelet-derived growth factor (PDGF)-stimulated proliferation of cultured human VSMC. Flow cytometry demonstrated that PDGF-stimulated S-phase progression of the cell cycle in VSMC was also suppressed by E(2) or raloxifene. We found that PDGF-induced phosphorylation of retinoblastoma protein (pRb), whose hyperphosphorylation is a hallmark of the G1-S transition in the cell cycle, was significantly inhibited by E(2) and raloxifene. These effects were associated with a decrease in cyclin D1 expression, without a change in cyclin-dependent kinase 4 or cyclin-dependent kinase inhibitor, p27(kip1) expression. ICI 182,780 abolished the inhibitory effects of E(2) and raloxifene on PDGF-induced pRb phosphorylation. Next, we examined which estrogen receptor (ER) is necessary for these effects of E(2) and raloxifene. Since VSMC express both ERalpha and ERbeta, A10, a rat aortic smooth muscle cell line that expresses ERbeta but not ERalpha, was used. The dose-dependent stimulation of A10 cell proliferation by PDGF was not inhibited by E(2) or raloxifene in contrast to the results obtained in VSMC. Moreover, E(2) and raloxifene significantly inhibited the PDGF-induced cyclin D1 promoter activity in A10 cells transfected with cDNA for ERalpha but not in the parental cells. These results suggested that E(2) and raloxifene exert an antiproliferative effect in VSMC treated with PDGF, at least in part through inhibition of pRb phosphorylation, and that the inhibitory effects of E(2) and raloxifene may be mainly mediated by ERalpha.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 953-953 ◽  
Author(s):  
Linda Resar ◽  
Joelle Hillion ◽  
Katrina Alino ◽  
Michelle Rudek ◽  
Judith Karp

Abstract Acute leukemia in adults continues to be a formidable clinical challenge that demands further investigation to identify more rational therapies. To optimize anti-leukemia therapy, we are investigating the prototypical cyclin dependent kinase (cdk) inhibitor, flavopiridol, in refractory or poor-risk disease. Flavopiridol is a cytotoxic molecule that is thought to induce cell cycle arrest by blocking cyclin-dependent kinase (cdk) function, thereby interfering with RNA Polymerase II activity and globally down-regulating gene expression. In the setting of pan-cdk inhibition, E2F1 is released and appears to drive apoptosis in transformed cells. Consistent with these proposed mechanisms of action, a previous study from our group showed that flavopiridol induces apoptosis in vitro in leukemic blasts from patients with refractory leukemia. Administration of flavopiridol was associated with a decrease in one or more of the following proteins in the leukemic blasts: RNA Polymerase II, STAT3, cyclin D1, Bcl-2, and Mcl-1. Serum VEGF levels also decreased in most patients. We are now investigating mRNA levels of the genes encoding these proteins by quantitative, RT-PCR in leukemic blasts from adult patients with refractory or poor-risk leukemia before and after flavopiridol therapy. We have treated 26 patients with flavopiridol at an escalating, hybrid dose followed by ara-c and mitxantrone. Adequate RNA from leukemic blasts before and after flavopiridol administration was available from 8 of 11 patients studied thus far. All cases (8/8) exhibit a marked decrease in mRNA for VEGF following flavopiridol. mRNA levels for other putative flavopiridol target genes is also decreased in a subset of leukemic blast samples after therapy, as follows: E2F1 (6/8), STAT3 (6/8), Mcl-1 (6/8), RNA Polymerase subunit 2a (3/3), and cyclin D1 (2/3). In contrast, bcl-2 mRNA levels increased after flavopiridol in most cases (7/8), which could represent a compensatory mechanism of leukemic blasts to avoid apoptotic cell death. Our preliminary studies indicate that flavopiridol is cytotoxic in poor-risk and refractory acute leukemia. Studies are underway to determine if down-regulation of any putative target genes correlates with pharmacologic data or clinical responses.


2002 ◽  
Vol 22 (7) ◽  
pp. 2242-2254 ◽  
Author(s):  
Xiaohong Leng ◽  
Martin Noble ◽  
Peter D. Adams ◽  
Jun Qin ◽  
J. Wade Harper

ABSTRACT p107 functions to control cell division and development through interaction with members of the E2F family of transcription factors. p107 is phosphorylated in a cell cycle-regulated manner, and its phosphorylation leads to its release from E2F. Although it is known that p107 physically associates with E- and A-type cyclin/cyclin-dependent kinase 2 (Cdk2) complexes through a cyclin-binding RXL motif located in the spacer domain, the mechanisms underlying p107 inactivation via phosphorylation remain poorly defined. Recent genetic evidence indicates a requirement for cyclin D1/Cdk4 complexes in p107 inactivation. In this work, we provide direct biochemical evidence for the involvement of cyclin D1/Cdk4 in the inactivation of p107's growth-suppressive function. While coexpression of cyclin D1/Cdk4 can reverse the cell cycle arrest properties of p107 in Saos-2 cells, we find that p107 in which the Lys-Arg-Arg-Leu sequence of the RXL motif is replaced by four alanine residues is largely refractory to inactivation by cyclin D/Cdk4, indicating a role for this motif in p107 inactivation without a requirement for its tight interaction with cyclin D1/Cdk4. We identified four phosphorylation sites in p107 (Thr-369, Ser-640, Ser-964, and Ser-975) that are efficiently phosphorylated by Cdk4 but not by Cdk2 in vitro and are also phosphorylated in tissue culture cells. Growth suppression by p107 containing nonphosphorylatable residues in these four sites is not reversed by coexpression of cyclin D1/Cdk4. In model p107 spacer region peptides, phosphorylation of S640 by cyclin D1/Cdk4 is strictly dependent upon an intact RXL motif, but phosphorylation of this site in the absence of an RXL motif can be partially restored by replacement of S643 by arginine. This suggests that one role for the RXL motif is to facilitate phosphorylation of nonconsensus Cdk substrates. Taken together, these data indicate that p107 is inactivated by cyclin D1/Cdk4 via direct phosphorylation and that the RXL motif of p107 plays a role in its inactivation by Cdk4 in the absence of stable binding.


1999 ◽  
Vol 19 (3) ◽  
pp. 2109-2117 ◽  
Author(s):  
Gretchen H. Stein ◽  
Linda F. Drullinger ◽  
Alexandre Soulard ◽  
Vjekoslav Dulić

ABSTRACT The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1cyclin–cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21Sdi1,Cip1,Waf1, which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16Ink4a, suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E- and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by ≤50% compared to young cells. We also provide new evidence that p21 may play a role in inactivation of the DNA replication factor proliferating cell nuclear antigen during early senescence. Finally, because p16 accumulates in parallel with the increases in senescence-associated β-Gal activity and cell volume that characterize the senescent phenotype, we suggest that p16 upregulation may be part of a differentiation program that is turned on in senescent cells. Since p21 decreases after senescence is achieved, this upregulation of p16 may be essential for maintenance of the senescent-cell-cycle arrest.


2012 ◽  
Vol 23 (18) ◽  
pp. 3722-3730 ◽  
Author(s):  
Prashant Kumar Modi ◽  
Narayana Komaravelli ◽  
Neha Singh ◽  
Pushkar Sharma

In response to neurotoxic signals, postmitotic neurons make attempts to reenter the cell cycle, which results in their death. Although several cell cycle proteins have been implicated in cell cycle–related neuronal apoptosis (CRNA), the molecular mechanisms that underlie this important event are poorly understood. Here, we demonstrate that neurotoxic agents such as β-amyloid peptide cause aberrant activation of mitogen-activated kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) signaling, which promotes the entry of neurons into the cell cycle, resulting in their apoptosis. The MEK-ERK pathway regulates CRNA by elevating the levels of cyclin D1. The increase in cyclin D1 attenuates the activation of cyclin-dependent kinase 5 (cdk5) by its neuronal activator p35. The inhibition of p35-cdk5 activity results in enhanced MEK-ERK signaling, leading to CRNA. These studies highlight how neurotoxic signals reprogram and alter the neuronal signaling machinery to promote their entry into the cell cycle, which eventually leads to neuronal cell death.


2011 ◽  
Vol 18 (4) ◽  
pp. C19-C24 ◽  
Author(s):  
Carol A Lange ◽  
Douglas Yee

The majority (∼70%) of breast cancers are steroid hormone receptor (SR) positive at the time of diagnosis. Endocrine therapies that target estrogen receptor α (ERα) action (tamoxifen, toremifene, fulvestrant) or estrogen synthesis (aromatase inhibitors: letrozole, anastrozole, exemestane; or ovarian suppression) are a clinical mainstay. However, up to 50% of SR+ breast cancers exhibit de novo or acquired resistance to these clinical interventions. Mechanisms of resistance to endocrine therapies often include upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Cyclin D1, the regulatory subunit of cyclin-dependent protein kinases four and six (CDK4/6) serves as a convergence point for multiple signaling pathways. In a recent paper entitled ‘Therapeutically Activating Retinoblastoma (RB): Reestablishing Cell Cycle Control in Endocrine Therapy-Resistant Breast Cancer’, Thangavel et al. reported maintenance of cyclin D1 expression and RB phosphorylation in the face of ER ablation in multiple breast cancer cell line models of endocrine resistance. RB-dysfunction defined a unique gene signature that was associated with luminal B-type breast cancer and predictive of poor response to endocrine therapies. Notably, a new CDK4/6 inhibitor (PD-0332991) was capable of inducing growth arrest by a mechanism that was most consistent with cellular senescence. In this review, these findings are discussed in the context of SRs as important mediators of cell cycle progression, and the frequent loss of cell cycle checkpoint control that typifies breast cancer progression. These studies provide renewed hope of effectively stabilizing endocrine-resistant breast cancers using available complementary (to endocrine-based therapies) cytostatic agents in the form of CDK4/6 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document